Spaces:
Runtime error
Runtime error
OOM solved
Browse files- .gitignore +1 -0
- app.py +1 -1
- apps/infer.py +3 -11
- gradio_cached_examples/13/log.csv +9 -0
- gradio_queue.db +0 -0
- lib/net/FBNet.py +2 -1
.gitignore
CHANGED
@@ -13,3 +13,4 @@ kaolin/
|
|
13 |
neural_voxelization_layer/
|
14 |
pytorch3d/
|
15 |
force_push.sh
|
|
|
|
13 |
neural_voxelization_layer/
|
14 |
pytorch3d/
|
15 |
force_push.sh
|
16 |
+
results/
|
app.py
CHANGED
@@ -117,7 +117,7 @@ with gr.Blocks() as demo:
|
|
117 |
|
118 |
gr.Examples(examples=examples,
|
119 |
inputs=[inp, radio_choice],
|
120 |
-
cache_examples=
|
121 |
fn=generate_model,
|
122 |
outputs=out_lst)
|
123 |
|
|
|
117 |
|
118 |
gr.Examples(examples=examples,
|
119 |
inputs=[inp, radio_choice],
|
120 |
+
cache_examples=True,
|
121 |
fn=generate_model,
|
122 |
outputs=out_lst)
|
123 |
|
apps/infer.py
CHANGED
@@ -14,10 +14,9 @@
|
|
14 |
#
|
15 |
# Contact: [email protected]
|
16 |
|
17 |
-
import os
|
18 |
|
19 |
import logging
|
20 |
-
from lib.common.render import query_color
|
21 |
from lib.common.config import cfg
|
22 |
from lib.dataset.mesh_util import (
|
23 |
load_checkpoint,
|
@@ -403,7 +402,7 @@ def generate_model(in_path, model_type):
|
|
403 |
loop_cloth.set_description(pbar_desc)
|
404 |
|
405 |
# update params
|
406 |
-
cloth_loss.backward(
|
407 |
optimizer_cloth.step()
|
408 |
scheduler_cloth.step(cloth_loss)
|
409 |
|
@@ -414,13 +413,6 @@ def generate_model(in_path, model_type):
|
|
414 |
process=False, maintains_order=True
|
415 |
)
|
416 |
|
417 |
-
# with front texture
|
418 |
-
# final_colors = query_color(
|
419 |
-
# mesh_pr.verts_packed().detach().squeeze(0).cpu(),
|
420 |
-
# mesh_pr.faces_packed().detach().squeeze(0).cpu(),
|
421 |
-
# in_tensor["image"],
|
422 |
-
# device=device,
|
423 |
-
# )
|
424 |
|
425 |
# without front texture
|
426 |
final_colors = (mesh_pr.verts_normals_padded().squeeze(0).detach().cpu() + 1.0) * 0.5 * 255.0
|
@@ -458,7 +450,7 @@ def generate_model(in_path, model_type):
|
|
458 |
for element in dir():
|
459 |
if 'path' not in element:
|
460 |
del locals()[element]
|
461 |
-
|
462 |
torch.cuda.empty_cache()
|
463 |
|
464 |
return [smpl_path, smpl_path, smpl_npy_path, recon_path, recon_path, refine_path, refine_path, video_path, overlap_path]
|
|
|
14 |
#
|
15 |
# Contact: [email protected]
|
16 |
|
17 |
+
import os, gc
|
18 |
|
19 |
import logging
|
|
|
20 |
from lib.common.config import cfg
|
21 |
from lib.dataset.mesh_util import (
|
22 |
load_checkpoint,
|
|
|
402 |
loop_cloth.set_description(pbar_desc)
|
403 |
|
404 |
# update params
|
405 |
+
cloth_loss.backward()
|
406 |
optimizer_cloth.step()
|
407 |
scheduler_cloth.step(cloth_loss)
|
408 |
|
|
|
413 |
process=False, maintains_order=True
|
414 |
)
|
415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
# without front texture
|
418 |
final_colors = (mesh_pr.verts_normals_padded().squeeze(0).detach().cpu() + 1.0) * 0.5 * 255.0
|
|
|
450 |
for element in dir():
|
451 |
if 'path' not in element:
|
452 |
del locals()[element]
|
453 |
+
gc.collect()
|
454 |
torch.cuda.empty_cache()
|
455 |
|
456 |
return [smpl_path, smpl_path, smpl_npy_path, recon_path, recon_path, refine_path, refine_path, video_path, overlap_path]
|
gradio_cached_examples/13/log.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'flag','username','timestamp'
|
2 |
+
'','','2022-08-01 22:47:24.908073'
|
3 |
+
'','','2022-08-01 22:48:20.753663'
|
4 |
+
'','','2022-08-01 22:49:15.504871'
|
5 |
+
'','','2022-08-01 22:50:16.762017'
|
6 |
+
'','','2022-08-01 22:51:09.444531'
|
7 |
+
'','','2022-08-01 22:52:09.357219'
|
8 |
+
'','','2022-08-01 22:53:02.217347'
|
9 |
+
'','','2022-08-01 22:54:11.545178'
|
gradio_queue.db
ADDED
Binary file (610 kB). View file
|
|
lib/net/FBNet.py
CHANGED
@@ -81,7 +81,8 @@ def define_G(input_nc,
|
|
81 |
# print(netG)
|
82 |
if len(gpu_ids) > 0:
|
83 |
assert (torch.cuda.is_available())
|
84 |
-
|
|
|
85 |
netG.apply(weights_init)
|
86 |
return netG
|
87 |
|
|
|
81 |
# print(netG)
|
82 |
if len(gpu_ids) > 0:
|
83 |
assert (torch.cuda.is_available())
|
84 |
+
device=torch.device(f"cuda:{gpu_ids[0]}")
|
85 |
+
netG = netG.to(device)
|
86 |
netG.apply(weights_init)
|
87 |
return netG
|
88 |
|