ICON / lib /renderer /opengl_util.py
Yuliang's picture
done
2d5f249
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
from lib.renderer.mesh import load_scan, compute_tangent
from lib.renderer.camera import Camera
import cv2
import math
import random
import numpy as np
def render_result(rndr, shader_id, path, mask=False):
cam_render = rndr.get_color(shader_id)
cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA)
os.makedirs(os.path.dirname(path), exist_ok=True)
if shader_id != 2:
cv2.imwrite(path, np.uint8(255.0 * cam_render))
else:
cam_render[:, :, -1] -= 0.5
cam_render[:, :, -1] *= 2.0
if not mask:
cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0)))
else:
cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]]))
def make_rotate(rx, ry, rz):
sinX = np.sin(rx)
sinY = np.sin(ry)
sinZ = np.sin(rz)
cosX = np.cos(rx)
cosY = np.cos(ry)
cosZ = np.cos(rz)
Rx = np.zeros((3, 3))
Rx[0, 0] = 1.0
Rx[1, 1] = cosX
Rx[1, 2] = -sinX
Rx[2, 1] = sinX
Rx[2, 2] = cosX
Ry = np.zeros((3, 3))
Ry[0, 0] = cosY
Ry[0, 2] = sinY
Ry[1, 1] = 1.0
Ry[2, 0] = -sinY
Ry[2, 2] = cosY
Rz = np.zeros((3, 3))
Rz[0, 0] = cosZ
Rz[0, 1] = -sinZ
Rz[1, 0] = sinZ
Rz[1, 1] = cosZ
Rz[2, 2] = 1.0
R = np.matmul(np.matmul(Rz, Ry), Rx)
return R
def rotateSH(SH, R):
SHn = SH
# 1st order
SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3]
SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3]
SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3]
# 2nd order
SHn[4:, 0] = rotateBand2(SH[4:, 0], R)
SHn[4:, 1] = rotateBand2(SH[4:, 1], R)
SHn[4:, 2] = rotateBand2(SH[4:, 2], R)
return SHn
def rotateBand2(x, R):
s_c3 = 0.94617469575
s_c4 = -0.31539156525
s_c5 = 0.54627421529
s_c_scale = 1.0 / 0.91529123286551084
s_c_scale_inv = 0.91529123286551084
s_rc2 = 1.5853309190550713 * s_c_scale
s_c4_div_c3 = s_c4 / s_c3
s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0
s_scale_dst2 = s_c3 * s_c_scale_inv
s_scale_dst4 = s_c5 * s_c_scale_inv
sh0 = x[3] + x[4] + x[4] - x[1]
sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4]
sh2 = x[0]
sh3 = -x[3]
sh4 = -x[1]
r2x = R[0][0] + R[0][1]
r2y = R[1][0] + R[1][1]
r2z = R[2][0] + R[2][1]
r3x = R[0][0] + R[0][2]
r3y = R[1][0] + R[1][2]
r3z = R[2][0] + R[2][2]
r4x = R[0][1] + R[0][2]
r4y = R[1][1] + R[1][2]
r4z = R[2][1] + R[2][2]
sh0_x = sh0 * R[0][0]
sh0_y = sh0 * R[1][0]
d0 = sh0_x * R[1][0]
d1 = sh0_y * R[2][0]
d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3)
d3 = sh0_x * R[2][0]
d4 = sh0_x * R[0][0] - sh0_y * R[1][0]
sh1_x = sh1 * R[0][2]
sh1_y = sh1 * R[1][2]
d0 += sh1_x * R[1][2]
d1 += sh1_y * R[2][2]
d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3)
d3 += sh1_x * R[2][2]
d4 += sh1_x * R[0][2] - sh1_y * R[1][2]
sh2_x = sh2 * r2x
sh2_y = sh2 * r2y
d0 += sh2_x * r2y
d1 += sh2_y * r2z
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2)
d3 += sh2_x * r2z
d4 += sh2_x * r2x - sh2_y * r2y
sh3_x = sh3 * r3x
sh3_y = sh3 * r3y
d0 += sh3_x * r3y
d1 += sh3_y * r3z
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2)
d3 += sh3_x * r3z
d4 += sh3_x * r3x - sh3_y * r3y
sh4_x = sh4 * r4x
sh4_y = sh4 * r4y
d0 += sh4_x * r4y
d1 += sh4_y * r4z
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2)
d3 += sh4_x * r4z
d4 += sh4_x * r4x - sh4_y * r4y
dst = x
dst[0] = d0
dst[1] = -d1
dst[2] = d2 * s_scale_dst2
dst[3] = -d3
dst[4] = d4 * s_scale_dst4
return dst
def load_calib(param, render_size=512):
# pixel unit / world unit
ortho_ratio = param['ortho_ratio']
# world unit / model unit
scale = param['scale']
# camera center world coordinate
center = param['center']
# model rotation
R = param['R']
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate(
[extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(render_size // 2)
uv_intrinsic[1, 1] = 1.0 / float(render_size // 2)
uv_intrinsic[2, 2] = 1.0 / float(render_size // 2)
intrinsic = np.matmul(uv_intrinsic, scale_intrinsic)
calib = np.concatenate([extrinsic, intrinsic], axis=0)
return calib
def render_prt_ortho(out_path,
folder_name,
subject_name,
shs,
rndr,
rndr_uv,
im_size,
angl_step=4,
n_light=1,
pitch=[0]):
cam = Camera(width=im_size, height=im_size)
cam.ortho_ratio = 0.4 * (512 / im_size)
cam.near = -100
cam.far = 100
cam.sanity_check()
# set path for obj, prt
mesh_file = os.path.join(folder_name, subject_name + '_100k.obj')
if not os.path.exists(mesh_file):
print('ERROR: obj file does not exist!!', mesh_file)
return
prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt')
if not os.path.exists(prt_file):
print('ERROR: prt file does not exist!!!', prt_file)
return
face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy')
if not os.path.exists(face_prt_file):
print('ERROR: face prt file does not exist!!!', prt_file)
return
text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg')
if not os.path.exists(text_file):
print('ERROR: dif file does not exist!!', text_file)
return
texture_image = cv2.imread(text_file)
texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB)
vertices, faces, normals, faces_normals, textures, face_textures = load_scan(
mesh_file, with_normal=True, with_texture=True)
vmin = vertices.min(0)
vmax = vertices.max(0)
up_axis = 1 if (vmax - vmin).argmax() == 1 else 2
vmed = np.median(vertices, 0)
vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis])
y_scale = 180 / (vmax[up_axis] - vmin[up_axis])
rndr.set_norm_mat(y_scale, vmed)
rndr_uv.set_norm_mat(y_scale, vmed)
tan, bitan = compute_tangent(vertices, faces, normals, textures,
face_textures)
prt = np.loadtxt(prt_file)
face_prt = np.load(face_prt_file)
rndr.set_mesh(vertices, faces, normals, faces_normals, textures,
face_textures, prt, face_prt, tan, bitan)
rndr.set_albedo(texture_image)
rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures,
face_textures, prt, face_prt, tan, bitan)
rndr_uv.set_albedo(texture_image)
os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name),
exist_ok=True)
os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name),
exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True)
os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name),
exist_ok=True)
if not os.path.exists(os.path.join(out_path, 'val.txt')):
f = open(os.path.join(out_path, 'val.txt'), 'w')
f.close()
# copy obj file
cmd = 'cp %s %s' % (mesh_file,
os.path.join(out_path, 'GEO', 'OBJ', subject_name))
print(cmd)
os.system(cmd)
for p in pitch:
for y in tqdm(range(0, 360, angl_step)):
R = np.matmul(make_rotate(math.radians(p), 0, 0),
make_rotate(0, math.radians(y), 0))
if up_axis == 2:
R = np.matmul(R, make_rotate(math.radians(90), 0, 0))
rndr.rot_matrix = R
rndr_uv.rot_matrix = R
rndr.set_camera(cam)
rndr_uv.set_camera(cam)
for j in range(n_light):
sh_id = random.randint(0, shs.shape[0] - 1)
sh = shs[sh_id]
sh_angle = 0.2 * np.pi * (random.random() - 0.5)
sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T)
dic = {
'sh': sh,
'ortho_ratio': cam.ortho_ratio,
'scale': y_scale,
'center': vmed,
'R': R
}
rndr.set_sh(sh)
rndr.analytic = False
rndr.use_inverse_depth = False
rndr.display()
out_all_f = rndr.get_color(0)
out_mask = out_all_f[:, :, 3]
out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR)
np.save(
os.path.join(out_path, 'PARAM', subject_name,
'%d_%d_%02d.npy' % (y, p, j)), dic)
cv2.imwrite(
os.path.join(out_path, 'RENDER', subject_name,
'%d_%d_%02d.jpg' % (y, p, j)),
255.0 * out_all_f)
cv2.imwrite(
os.path.join(out_path, 'MASK', subject_name,
'%d_%d_%02d.png' % (y, p, j)),
255.0 * out_mask)
rndr_uv.set_sh(sh)
rndr_uv.analytic = False
rndr_uv.use_inverse_depth = False
rndr_uv.display()
uv_color = rndr_uv.get_color(0)
uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR)
cv2.imwrite(
os.path.join(out_path, 'UV_RENDER', subject_name,
'%d_%d_%02d.jpg' % (y, p, j)),
255.0 * uv_color)
if y == 0 and j == 0 and p == pitch[0]:
uv_pos = rndr_uv.get_color(1)
uv_mask = uv_pos[:, :, 3]
cv2.imwrite(
os.path.join(out_path, 'UV_MASK', subject_name,
'00.png'), 255.0 * uv_mask)
data = {
'default': uv_pos[:, :, :3]
} # default is a reserved name
pyexr.write(
os.path.join(out_path, 'UV_POS', subject_name,
'00.exr'), data)
uv_nml = rndr_uv.get_color(2)
uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR)
cv2.imwrite(
os.path.join(out_path, 'UV_NORMAL', subject_name,
'00.png'), 255.0 * uv_nml)