Refactor : access to the model
Browse files- Dockerfile +3 -0
- helper_functions.py +3 -5
Dockerfile
CHANGED
@@ -17,6 +17,9 @@ ENV HF_HOME /code/.cache/huggingface
|
|
17 |
# Create cache directory with appropriate permissions
|
18 |
RUN mkdir -p $HF_HOME && chmod -R 777 $HF_HOME
|
19 |
|
|
|
|
|
|
|
20 |
# Copy the rest of the application files
|
21 |
COPY . .
|
22 |
|
|
|
17 |
# Create cache directory with appropriate permissions
|
18 |
RUN mkdir -p $HF_HOME && chmod -R 777 $HF_HOME
|
19 |
|
20 |
+
# Copy the model files into the image
|
21 |
+
COPY ./bertModel-20240428T144909Z-001 /code/bertModel-20240428T144909Z-001
|
22 |
+
|
23 |
# Copy the rest of the application files
|
24 |
COPY . .
|
25 |
|
helper_functions.py
CHANGED
@@ -6,15 +6,13 @@ from typing import Optional
|
|
6 |
from torch import Tensor
|
7 |
|
8 |
# Load the model
|
9 |
-
|
10 |
-
model = BertForSequenceClassification.from_pretrained(model_path)
|
11 |
|
12 |
# Load the tokenizer
|
13 |
-
|
14 |
-
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
|
15 |
|
16 |
# Charger le label encoder
|
17 |
-
with open("label_encoder.pkl", "rb") as f:
|
18 |
label_encoder = pickle.load(f)
|
19 |
|
20 |
class_labels = {
|
|
|
6 |
from torch import Tensor
|
7 |
|
8 |
# Load the model
|
9 |
+
model = BertForSequenceClassification.from_pretrained(r"bertModel-20240428T144909Z-001\bertModel\saved_model")
|
|
|
10 |
|
11 |
# Load the tokenizer
|
12 |
+
tokenizer = BertTokenizer.from_pretrained(r"bertModel-20240428T144909Z-001\bertModel\saved_tokenizer")
|
|
|
13 |
|
14 |
# Charger le label encoder
|
15 |
+
with open(r"bertModel-20240428T144909Z-001\bertModel\label_encoder.pkl", "rb") as f:
|
16 |
label_encoder = pickle.load(f)
|
17 |
|
18 |
class_labels = {
|