# -*- coding: utf-8 -*- """customized_final_app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1EsQl5_gVT9N3YJfSlPMm2A2m9kGYTGXn """ !pip install gradio from transformers import pipeline, set_seed, GenerationConfig, AutoModelForCausalLM import gradio as gr import torch gpt2_generator = pipeline('text-generation', model='gpt2') tinyllama_generator = pipeline('text-generation', model='as-cle-bert/tinyllama-essay-scorer') def load_model(model_name): global generator generator = pipeline('text-generation', model=model_name, trust_remote_code=True) def generate_text(model, prompt, temperature, max_length, top_p): if temperature == 0: do_sample = False else: do_sample = True load_model(model) response = generator(prompt, max_length=max_length, do_sample=do_sample, temperature=temperature, top_p=top_p)[0]["generated_text"] return response interface = gr.Interface( fn=generate_text, inputs=[ gr.components.Dropdown(label="Choose a Model", choices=['gpt2', 'as-cle-bert/tinyllama-essay-scorer'], value='gpt2', info="Select the model for generating text."), gr.components.Dropdown(label="Prompt", choices=['Write a tagline for an ice cream shop', 'Write a poem about spring', 'Write an introduction to the University of Zurich'], value='Write a tagline for an ice cream shop'), gr.components.Slider(minimum=0, maximum=2, step=0.01, value = 1, label="Temperature", info = "(For τ = 1, the distribution is unchanged;For τ > 1, the distribution becomes more uniform; For τ < 1, the distribution becomes more peaked.)"), gr.components.Slider(minimum=1, maximum=256, step=1, value = 16, label="Max Length", info ="(Maximum length is the maximum limit of the generated text.)"), gr.components.Slider(minimum=0, maximum=1, step=0.01, value=1, label="Top-p", info="(Top-p sampling is to keep the top p percent of the probability mass.)") ], outputs=[gr.Textbox(label="Output", lines=3, placeholder = "Hello, World!")], title="Text Generation Control Panel", description="Adjust the settings to control the text generation parameters." ) interface.launch(share=True)