File size: 6,487 Bytes
77c2378
9baac46
 
f4907db
9baac46
 
 
77c2378
 
9baac46
 
 
77c2378
9baac46
 
77c2378
9baac46
 
f4907db
9baac46
f4907db
77c2378
9baac46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c2378
9baac46
77c2378
 
 
 
 
 
 
 
9baac46
 
77c2378
 
9baac46
77c2378
 
9baac46
 
 
 
 
77c2378
 
9baac46
f4907db
9baac46
 
 
77c2378
 
9baac46
77c2378
 
 
 
9baac46
f4907db
9baac46
 
77c2378
 
9baac46
 
 
 
 
 
 
 
77c2378
9baac46
 
 
 
77c2378
 
9baac46
 
 
 
 
f4907db
9baac46
 
 
 
77c2378
 
9baac46
 
 
77c2378
 
 
 
 
 
 
9baac46
77c2378
9baac46
 
 
 
77c2378
 
 
9baac46
 
77c2378
 
f4907db
9baac46
 
f4907db
9baac46
77c2378
 
9baac46
f4907db
9baac46
f4907db
 
9baac46
 
 
 
 
 
 
f4907db
 
9baac46
 
 
 
f4907db
9baac46
77c2378
 
 
 
 
 
9baac46
77c2378
9baac46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import logging
import asyncio
import uvicorn
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from fastapi import FastAPI, Query, HTTPException
from fastapi.responses import HTMLResponse

# Configuraci贸n de logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Inicializar la aplicaci贸n FastAPI
app = FastAPI()

# Diccionario para almacenar los modelos
data_and_models_dict = {}

# Lista para almacenar el historial de mensajes
message_history = []

# Funci贸n para cargar modelos
async def load_models():
    gpt_models = ["gpt2-medium", "gpt2-large", "gpt2"]
    for model_name in gpt_models:
        try:
            model = AutoModelForCausalLM.from_pretrained(model_name)
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            logger.info(f"Successfully loaded {model_name} model")
            return model, tokenizer
        except Exception as e:
            logger.error(f"Failed to load GPT-2 model: {e}")
    raise HTTPException(status_code=500, detail="Failed to load any models")

# Funci贸n para descargar modelos
async def download_models():
    model, tokenizer = await load_models()
    data_and_models_dict['model'] = (model, tokenizer)

@app.get('/')
async def main():
    html_code = """
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>ChatGPT Chatbot</title>
        <style>
            body, html {
                height: 100%;
                margin: 0;
                padding: 0;
                font-family: Arial, sans-serif;
            }
            .container {
                height: 100%;
                display: flex;
                flex-direction: column;
                justify-content: center;
                align-items: center;
            }
            .chat-container {
                border-radius: 10px;
                overflow: hidden;
                box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
                width: 100%;
                height: 100%;
            }
            .chat-box {
                height: calc(100% - 60px);
                overflow-y: auto;
                padding: 10px;
            }
            .chat-input {
                width: calc(100% - 100px);
                padding: 10px;
                border: none;
                border-top: 1px solid #ccc;
                font-size: 16px;
            }
            .input-container {
                display: flex;
                align-items: center;
                justify-content: space-between;
                padding: 10px;
                background-color: #f5f5f5;
                border-top: 1px solid #ccc;
                width: 100%;
            }
            button {
                padding: 10px;
                border: none;
                cursor: pointer;
                background-color: #007bff;
                color: #fff;
                font-size: 16px;
            }
            .user-message {
                background-color: #cce5ff;
                border-radius: 5px;
                align-self: flex-end;
                max-width: 70%;
                margin-left: auto;
                margin-right: 10px;
                margin-bottom: 10px;
            }
            .bot-message {
                background-color: #d1ecf1;
                border-radius: 5px;
                align-self: flex-start;
                max-width: 70%;
                margin-bottom: 10px;
            }
        </style>
    </head>
    <body>
        <div class="container">
            <div class="chat-container">
                <div class="chat-box" id="chat-box"></div>
                <div class="input-container">
                    <input type="text" class="chat-input" id="user-input" placeholder="Escribe un mensaje...">
                    <button onclick="sendMessage()">Enviar</button>
                </div>
            </div>
        </div>
        <script>
            const chatBox = document.getElementById('chat-box');
            const userInput = document.getElementById('user-input');

            function saveMessage(sender, message) {
                const messageElement = document.createElement('div');
                messageElement.textContent = `${sender}: ${message}`;
                messageElement.classList.add(`${sender}-message`);
                chatBox.appendChild(messageElement);
                userInput.value = '';
            }

            async function sendMessage() {
                const userMessage = userInput.value.trim();
                if (!userMessage) return;

                saveMessage('user', userMessage);
                await fetch(`/autocomplete?q=${userMessage}`)
                    .then(response => response.text())
                    .then(data => {
                        saveMessage('bot', data);
                        chatBox.scrollTop = chatBox.scrollHeight;
                    })
                    .catch(error => console.error('Error:', error));
            }

            userInput.addEventListener("keyup", function(event) {
                if (event.keyCode === 13) {
                    event.preventDefault();
                    sendMessage();
                }
            });
        </script>
    </body>
    </html>
    """
    return HTMLResponse(content=html_code, status_code=200)

# Ruta para la generaci贸n de respuestas
@app.get('/autocomplete')
async def autocomplete(q: str = Query(...)):
    global data_and_models_dict, message_history

    # Verificar si hay modelos cargados
    if 'model' not in data_and_models_dict:
        await download_models()

    # Obtener el modelo
    model, tokenizer = data_and_models_dict['model']

    # Guardar el mensaje del usuario en el historial
    message_history.append(q)

    # Generar una respuesta utilizando el modelo
    input_ids = tokenizer.encode(q, return_tensors="pt")
    output = model.generate(input_ids, max_length=50, num_return_sequences=1)
    response_text = tokenizer.decode(output[0], skip_special_tokens=True)

    # Guardar la respuesta en el historial
    message_history.append(response_text)

    return response_text

# Funci贸n para ejecutar la aplicaci贸n sin reiniciarla
def run_app():
    asyncio.run(download_models())
    uvicorn.run(app, host='0.0.0.0', port=7860)

# Ejecutar la aplicaci贸n
if __name__ == "__main__":
    run_app()