|
from fastapi import FastAPI, HTTPException, UploadFile, File |
|
from pydantic import BaseModel |
|
from aitextgen import aitextgen |
|
from sklearn.datasets import fetch_20newsgroups |
|
import nltk |
|
import spacy |
|
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor |
|
from transformers import TTSModel, TTSProcessor |
|
from audiocraft.models import MusicGen |
|
from diffusers import StableDiffusionPipeline |
|
import os |
|
from typing import List |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
spacy_model = spacy.load('en_core_web_sm') |
|
|
|
app = FastAPI() |
|
|
|
|
|
global aitextgen_model, hf_model, musicgen_model, image_generation_model, whisper_model, whisper_processor, tts_model, tts_processor, newsgroups |
|
aitextgen_model = None |
|
hf_model = None |
|
musicgen_model = None |
|
image_generation_model = None |
|
whisper_model = None |
|
whisper_processor = None |
|
tts_model = None |
|
tts_processor = None |
|
newsgroups = None |
|
|
|
|
|
def load_aitextgen_model(): |
|
global aitextgen_model |
|
if aitextgen_model is None: |
|
aitextgen_model = aitextgen() |
|
return aitextgen_model |
|
|
|
def load_hf_model(): |
|
global hf_model |
|
if hf_model is None: |
|
hf_model = pipeline('text-generation', model='gpt2') |
|
return hf_model |
|
|
|
def load_musicgen_model(): |
|
global musicgen_model |
|
if musicgen_model is None: |
|
musicgen_model = MusicGen.get_pretrained('small') |
|
return musicgen_model |
|
|
|
def load_image_generation_model(): |
|
global image_generation_model |
|
if image_generation_model is None: |
|
image_generation_model = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
return image_generation_model |
|
|
|
def load_whisper_model(): |
|
global whisper_model, whisper_processor |
|
if whisper_model is None: |
|
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") |
|
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small") |
|
return whisper_model, whisper_processor |
|
|
|
def load_tts_model(): |
|
global tts_model, tts_processor |
|
if tts_model is None: |
|
tts_model = TTSModel.from_pretrained("facebook/tts_transformer-tts") |
|
tts_processor = TTSProcessor.from_pretrained("facebook/tts_transformer-tts") |
|
return tts_model, tts_processor |
|
|
|
def load_newsgroups(): |
|
global newsgroups |
|
if newsgroups is None: |
|
newsgroups = fetch_20newsgroups(subset='all').data |
|
return newsgroups |
|
|
|
class TextRequest(BaseModel): |
|
prompt: str |
|
max_length: int = 50 |
|
|
|
class MusicRequest(BaseModel): |
|
prompt: str |
|
duration: float = 10.0 |
|
|
|
class ImageRequest(BaseModel): |
|
prompt: str |
|
height: int = 512 |
|
width: int = 512 |
|
|
|
class TTSRequest(BaseModel): |
|
text: str |
|
|
|
@app.get("/") |
|
def read_root(): |
|
return {"message": "Welcome to the Text, Music Generation, Image Generation, Whisper, and TTS API!"} |
|
|
|
@app.post("/generate/") |
|
def generate_text(request: TextRequest): |
|
aitextgen_model = load_aitextgen_model() |
|
generated_text = aitextgen_model.generate(prompt=request.prompt, max_length=request.max_length) |
|
return {"generated_text": generated_text} |
|
|
|
@app.post("/hf_generate/") |
|
def hf_generate_text(request: TextRequest): |
|
hf_model = load_hf_model() |
|
generated_text = hf_model(request.prompt, max_length=request.max_length) |
|
return {"generated_text": generated_text[0]['generated_text']} |
|
|
|
@app.post("/music/") |
|
def generate_music(request: MusicRequest): |
|
musicgen_model = load_musicgen_model() |
|
audio = musicgen_model.generate([request.prompt], durations=[request.duration]) |
|
musicgen_model.save_wav(audio[0], 'generated_music.wav') |
|
return {"message": "Music generated successfully", "audio_file": "generated_music.wav"} |
|
|
|
@app.post("/generate_image/") |
|
def generate_image(request: ImageRequest): |
|
image_generation_model = load_image_generation_model() |
|
image = image_generation_model(request.prompt, height=request.height, width=request.width).images[0] |
|
image_path = "generated_image.png" |
|
image.save(image_path) |
|
return {"message": "Image generated successfully", "image_file": "generated_image.png"} |
|
|
|
@app.post("/transcribe/") |
|
async def transcribe_audio(file: UploadFile = File(...)): |
|
whisper_model, whisper_processor = load_whisper_model() |
|
audio_input = await file.read() |
|
audio_input = whisper_processor(audio_input, return_tensors="pt").input_features |
|
|
|
with torch.no_grad(): |
|
predicted_ids = whisper_model.generate(audio_input) |
|
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
return {"transcription": transcription} |
|
|
|
@app.post("/tts/") |
|
def text_to_speech(request: TTSRequest): |
|
tts_model, tts_processor = load_tts_model() |
|
audio = tts_model.generate(request.text) |
|
audio_path = "generated_speech.wav" |
|
tts_model.save_wav(audio, audio_path) |
|
return {"message": "Speech generated successfully", "audio_file": "generated_speech.wav"} |
|
|
|
@app.get("/newsgroups/") |
|
def get_newsgroups(): |
|
newsgroups_data = load_newsgroups() |
|
return {"newsgroups": newsgroups_data[:5]} |
|
|
|
@app.post("/process/") |
|
def process_text(text: str): |
|
tokens = nltk.word_tokenize(text) |
|
doc = spacy_model(text) |
|
return { |
|
"tokens": tokens, |
|
"entities": [(ent.text, ent.label_) for ent in doc.ents] |
|
} |
|
|