File size: 12,173 Bytes
81ca2c9 fa6550a 81ca2c9 a4863fb c4ffa87 81ca2c9 a4863fb fa6550a a4863fb fa6550a a4863fb 81ca2c9 8c46119 81ca2c9 a4863fb 81ca2c9 a4863fb 81ca2c9 a4863fb 81ca2c9 a4863fb 81ca2c9 8c46119 81ca2c9 a4863fb 8c46119 81ca2c9 a4863fb 8c46119 81ca2c9 a4863fb 81ca2c9 8c46119 81ca2c9 8c46119 9eb4861 8c46119 9eb4861 8c46119 9eb4861 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 a4863fb 81ca2c9 a4863fb 81ca2c9 9eb4861 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 a4863fb 81ca2c9 a4863fb 81ca2c9 eab90e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import sys
import torch
import uvicorn
import redis
import numpy as np
import random
from fastapi import FastAPI, Query, BackgroundTasks
from fastapi.responses import HTMLResponse
from starlette.middleware.cors import CORSMiddleware
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel, pipeline
from loguru import logger
from dotenv import load_dotenv
from sklearn.metrics.pairwise import cosine_similarity
from kaggle.api.kaggle_api_extended import KaggleApi
# Importar la librería de spaces
import spaces
sys.path.append('..')
load_dotenv()
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
kaggle_username = os.getenv('KAGGLE_USERNAME')
kaggle_key = os.getenv('KAGGLE_KEY')
redis_host = os.getenv('REDIS_HOST', 'localhost')
redis_port = os.getenv('REDIS_PORT', 6379)
redis_password = os.getenv('REDIS_PASSWORD', 'huggingface_spaces')
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password, decode_responses=True)
MAX_ITEMS_PER_TABLE = 10000
# Decorador para usar GPU en Spaces
@spaces.GPU()
def generate_responses_gpu(q):
generated_responses = []
try:
for model_name in redis_client.hkeys("models"):
try:
model_data = redis_client.hget("models", model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Generar valores aleatorios para top_p, top_k y temperature
top_p = round(random.uniform(0.01, 0.99), 2)
top_k = random.randint(1, 99)
temperature = round(random.uniform(0.01, 1.99), 2)
text_generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
generated_response = text_generation_pipeline(q, do_sample=True, max_length=50, num_return_sequences=5,
top_p=top_p, top_k=top_k, temperature=temperature)
generated_responses.extend([response['generated_text'] for response in generated_response])
except Exception as e:
logger.error(f"Error generating response with model {model_name}: {e}")
if generated_responses:
similarities = calculate_similarity(q, generated_responses)
most_coherent_response = generated_responses[np.argmax(similarities)]
store_to_redis_table(q, "\n".join(generated_responses))
redis_client.hset("responses", q, most_coherent_response)
else:
logger.warning("No valid responses generated.")
except Exception as e:
logger.error(f"General error in autocomplete: {e}")
def get_current_table_index():
return int(redis_client.get("current_table_index") or 0)
def increment_table_index():
current_index = get_current_table_index()
redis_client.set("current_table_index", current_index + 1)
def store_to_redis_table(key, content):
current_index = get_current_table_index()
table_name = f"table_{current_index}"
item_count = redis_client.hlen(table_name)
if item_count >= MAX_ITEMS_PER_TABLE:
increment_table_index()
table_name = f"table_{get_current_table_index()}"
redis_client.hset(table_name, key, content)
def load_and_store_models(model_names):
for name in model_names:
try:
model = GPT2LMHeadModel.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)
sample_text = "Sample input"
generated_text = model.generate(tokenizer.encode(sample_text, return_tensors="pt"), max_length=50)
decoded_text = tokenizer.decode(generated_text[0], skip_special_tokens=True)
store_to_redis_table(name, decoded_text)
redis_client.hset("models", name, decoded_text)
except Exception as e:
logger.error(f"Error loading model {name}: {e}")
def load_kaggle_datasets(dataset_names):
api = KaggleApi()
api.authenticate()
for dataset_name in dataset_names:
try:
api.dataset_download_files(dataset_name, path='./kaggle_datasets', unzip=True)
dataset = load_dataset('csv', data_files=[f'./kaggle_datasets/{dataset_name}/*.csv'])['train']
sample_data = dataset.to_pandas().head(10).to_json(orient='records')
store_to_redis_table(dataset_name, sample_data)
redis_client.hset("kaggle_datasets", dataset_name, sample_data)
except Exception as e:
logger.error(f"Error loading Kaggle dataset {dataset_name}: {e}")
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
message_history = []
@app.get('/')
async def index():
chat_history = redis_client.hgetall(f"table_{get_current_table_index()}")
chat_history_html = "".join(f"<div class='bot-message'>{msg}</div>" for msg in chat_history.values())
html_code = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ChatGPT Chatbot</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 0; padding: 0; background-color: #f4f4f4; }}
.container {{ max-width: 800px; margin: auto; padding: 20px; }}
.chat-container {{ background-color: #fff; border-radius: 8px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); overflow: hidden; margin-bottom: 20px; }}
.chat-box {{ height: 300px; overflow-y: auto; padding: 10px; }}
.chat-input {{ width: calc(100% - 20px); border: none; border-top: 1px solid #ddd; padding: 10px; font-size: 16px; outline: none; }}
.user-message, .bot-message {{ margin-bottom: 10px; padding: 8px 12px; border-radius: 8px; max-width: 70%; word-wrap: break-word; }}
.user-message {{ background-color: #007bff; color: #fff; align-self: flex-end; }}
.bot-message {{ background-color: #4CAF50; color: #fff; }}
#autocomplete-suggestions {{
position: absolute;
background-color: #fff;
border: 1px solid #ccc;
border-radius: 4px;
z-index: 10;
max-width: calc(100% - 40px);
}}
.suggestion {{
padding: 8px;
cursor: pointer;
}}
.suggestion:hover {{
background-color: #f0f0f0;
}}
</style>
</head>
<body>
<div class="container">
<h1 style="text-align: center;">ChatGPT Chatbot</h1>
<div class="chat-container" id="chat-container">
<div class="chat-box" id="chat-box">
{chat_history_html}
</div>
<input type="text" class="chat-input" id="user-input" placeholder="Type your message..." autocomplete="off">
<div id="autocomplete-suggestions"></div>
</div>
</div>
<script>
const userInput = document.getElementById('user-input');
const autocompleteSuggestions = document.getElementById('autocomplete-suggestions');
userInput.addEventListener('keyup', function(event) {{
if (event.key === 'Enter') {{
event.preventDefault();
sendMessage();
}} else {{
fetch(`/autocomplete?q=` + encodeURIComponent(userInput.value))
.then(response => response.json())
.then(data => {{
displayAutocompleteSuggestions(data.suggestions);
}})
.catch(error => {{
console.error('Error:', error);
}});
}}
}});
function displayAutocompleteSuggestions(suggestions) {{
autocompleteSuggestions.innerHTML = '';
if (suggestions.length > 0) {{
suggestions.forEach(suggestion => {{
const suggestionElement = document.createElement('div');
suggestionElement.className = 'suggestion';
suggestionElement.innerText = suggestion;
suggestionElement.onclick = () => {{
userInput.value = suggestion;
autocompleteSuggestions.innerHTML = '';
}};
autocompleteSuggestions.appendChild(suggestionElement);
}});
}}
}}
function sendMessage() {{
const userMessage = userInput.value.trim();
if (userMessage === '') return;
appendMessage('user', userMessage);
userInput.value = '';
autocompleteSuggestions.innerHTML = '';
fetch(`/autocomplete?q=` + encodeURIComponent(userMessage))
.then(response => response.json())
.then(data => {{
fetch(`/get_response?q=` + encodeURIComponent(userMessage))
.then(response => response.json())
.then(data => {{
const botMessage = data.response;
appendMessage('bot', botMessage);
}})
.catch(error => {{
console.error('Error:', error);
}});
}})
.catch(error => {{
console.error('Error:', error);
}});
}}
function appendMessage(sender, message) {{
const chatBox = document.getElementById('chat-box');
const messageElement = document.createElement('div');
messageElement.className = sender + '-message';
messageElement.innerText = message;
chatBox.appendChild(messageElement);
}}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code, status_code=200)
def calculate_similarity(base_text, candidate_texts):
base_vector = np.array([len(base_text)])
similarities = []
for text in candidate_texts:
candidate_vector = np.array([len(text)])
similarity = cosine_similarity([base_vector], [candidate_vector])
similarities.append(similarity[0][0])
return similarities
@app.get('/autocomplete')
async def autocomplete(q: str = Query(..., title='query'), background_tasks: BackgroundTasks = BackgroundTasks()):
global message_history
message_history.append(('user', q))
suggestions = []
if q:
for key in redis_client.hkeys("responses"):
if q.lower() in key.lower():
suggestions.append(key)
# Lanzar la tarea en segundo plano utilizando la función decorada con @spaces.GPU()
background_tasks.add_task(generate_responses_gpu, q)
return {"status": "Processing request, please wait...", "suggestions": suggestions}
@app.get('/get_response')
async def get_response(q: str = Query(..., title='query')):
response = redis_client.hget("responses", q)
return {"response": response}
if __name__ == '__main__':
gpt2_models = [
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl"
]
programming_models = [
"google/bert2bert_L-24_uncased",
"microsoft/CodeGPT-small-java",
"microsoft/CodeGPT-small-python",
"Salesforce/codegen-350M-multi"
]
kaggle_datasets = [
"uciml/iris",
"arshid/iris-flower-dataset",
"heesoo37/120-years-of-olympic-history-athletes-and-results"
]
load_and_store_models(gpt2_models + programming_models)
load_kaggle_datasets(kaggle_datasets)
uvicorn.run(app=app, host='0.0.0.0', port=int(os.getenv("PORT", 7860))) |