File size: 8,581 Bytes
81ca2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c46119
81ca2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c46119
 
81ca2c9
 
8c46119
 
81ca2c9
8c46119
81ca2c9
 
 
 
 
 
8c46119
81ca2c9
8c46119
 
9eb4861
8c46119
9eb4861
 
8c46119
 
9eb4861
8c46119
 
 
81ca2c9
8c46119
 
81ca2c9
8c46119
81ca2c9
 
8c46119
81ca2c9
 
8c46119
81ca2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f742aec
81ca2c9
 
 
 
8c46119
81ca2c9
9eb4861
 
 
 
 
81ca2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c46119
81ca2c9
 
 
 
 
 
 
8c46119
 
 
81ca2c9
 
8c46119
81ca2c9
 
 
 
 
 
 
 
 
8c46119
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import sys
import torch
import uvicorn
import redis
import numpy as np
from fastapi import FastAPI, Query, BackgroundTasks
from fastapi.responses import HTMLResponse
from starlette.middleware.cors import CORSMiddleware
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel, pipeline
from loguru import logger
from dotenv import load_dotenv
from sklearn.metrics.pairwise import cosine_similarity

sys.path.append('..')

load_dotenv()

huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
kaggle_username = os.getenv('KAGGLE_USERNAME')
kaggle_key = os.getenv('KAGGLE_KEY')

redis_host = os.getenv('REDIS_HOST', 'localhost')
redis_port = os.getenv('REDIS_PORT', 6379)
redis_password = os.getenv('REDIS_PASSWORD', 'huggingface_spaces')
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password, decode_responses=True)

MAX_ITEMS_PER_TABLE = 10000

def get_current_table_index():
    return int(redis_client.get("current_table_index") or 0)

def increment_table_index():
    current_index = get_current_table_index()
    redis_client.set("current_table_index", current_index + 1)

def store_to_redis_table(key, content):
    current_index = get_current_table_index()
    table_name = f"table_{current_index}"
    item_count = redis_client.hlen(table_name)
    if item_count >= MAX_ITEMS_PER_TABLE:
        increment_table_index()
        table_name = f"table_{get_current_table_index()}"
    redis_client.hset(table_name, key, content)

def load_and_store_models(model_names):
    for name in model_names:
        try:
            model = GPT2LMHeadModel.from_pretrained(name)
            tokenizer = AutoTokenizer.from_pretrained(name)
            sample_text = "Sample input"
            generated_text = model.generate(tokenizer.encode(sample_text, return_tensors="pt"), max_length=50)
            decoded_text = tokenizer.decode(generated_text[0], skip_special_tokens=True)
            store_to_redis_table(name, decoded_text)
            redis_client.hset("models", name, decoded_text)
        except Exception as e:
            logger.error(f"Error loading model {name}: {e}")

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"]
)

message_history = []

@app.get('/')
async def index():
    chat_history = redis_client.hgetall(f"table_{get_current_table_index()}")
    chat_history_html = "".join(f"<div class='bot-message'>{msg}</div>" for msg in chat_history.values())

    html_code = f"""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>ChatGPT Chatbot</title>
        <style>
            body {{ font-family: Arial, sans-serif; margin: 0; padding: 0; background-color: #f4f4f4; }}
            .container {{ max-width: 800px; margin: auto; padding: 20px; }}
            .chat-container {{ background-color: #fff; border-radius: 8px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); overflow: hidden; margin-bottom: 20px; }}
            .chat-box {{ height: 300px; overflow-y: auto; padding: 10px; }}
            .chat-input {{ width: calc(100% - 20px); border: none; border-top: 1px solid #ddd; padding: 10px; font-size: 16px; outline: none; }}
            .user-message, .bot-message {{ margin-bottom: 10px; padding: 8px 12px; border-radius: 8px; max-width: 70%; word-wrap: break-word; }}
            .user-message {{ background-color: #007bff; color: #fff; align-self: flex-end; }}
            .bot-message {{ background-color: #4CAF50; color: #fff; }}
        </style>
    </head>
    <body>
        <div class="container">
            <h1 style="text-align: center;">ChatGPT Chatbot</h1>
            <div class="chat-container" id="chat-container">
                <div class="chat-box" id="chat-box">
                    {chat_history_html}
                </div>
                <input type="text" class="chat-input" id="user-input" placeholder="Type your message...">
            </div>
        </div>
        <script>
            const userInput = document.getElementById('user-input');

            userInput.addEventListener('keyup', function(event) {{
                if (event.key === 'Enter') {{
                    event.preventDefault();
                    sendMessage();
                }}
            }});

            function sendMessage() {{
                const userMessage = userInput.value.trim();
                if (userMessage === '') return;

                appendMessage('user', userMessage);
                userInput.value = '';

                fetch(`/autocomplete?q=` + encodeURIComponent(userMessage))
                .then(response => response.json())
                .then(data => {{
                    fetch(`/get_response?q=` + encodeURIComponent(userMessage))
                    .then(response => response.json())
                    .then(data => {{
                        const botMessage = data.response;
                        appendMessage('bot', botMessage);
                    }})
                    .catch(error => {{
                        console.error('Error:', error);
                    }});
                }})
                .catch(error => {{
                    console.error('Error:', error);
                }});
            }}

            function appendMessage(sender, message) {{
                const chatBox = document.getElementById('chat-box');
                const messageElement = document.createElement('div');
                messageElement.className = sender + '-message';
                messageElement.innerText = message;
                chatBox.appendChild(messageElement);
            }}
        </script>
    </body>
    </html>
    """
    return HTMLResponse(content=html_code, status_code=200)

def calculate_similarity(base_text, candidate_texts):
    base_vector = np.array([len(base_text)])
    similarities = []
    for text in candidate_texts:
        candidate_vector = np.array([len(text)])
        similarity = cosine_similarity([base_vector], [candidate_vector])
        similarities.append(similarity[0][0])
    return similarities

@app.get('/autocomplete')
async def autocomplete(q: str = Query(..., title='query'), background_tasks: BackgroundTasks = BackgroundTasks()): # Corrección: Mover background_tasks al final
    global message_history
    message_history.append(('user', q))

    background_tasks.add_task(generate_responses, q)
    return {"status": "Processing request, please wait..."}

@app.get('/get_response')
async def get_response(q: str = Query(..., title='query')):
    response = redis_client.hget("responses", q)
    return {"response": response}

def generate_responses(q):
    generated_responses = []
    try:
        for model_name in redis_client.hkeys("models"):
            try:
                model_data = redis_client.hget("models", model_name)
                model = GPT2LMHeadModel.from_pretrained(model_name)
                tokenizer = AutoTokenizer.from_pretrained(model_name)
                text_generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
                generated_response = text_generation_pipeline(q, do_sample=True, max_length=50, num_return_sequences=5)
                generated_responses.extend([response['generated_text'] for response in generated_response])
            except Exception as e:
                logger.error(f"Error generating response with model {model_name}: {e}")

        if generated_responses:
            similarities = calculate_similarity(q, generated_responses)
            most_coherent_response = generated_responses[np.argmax(similarities)]
            store_to_redis_table(q, "\n".join(generated_responses))
            redis_client.hset("responses", q, most_coherent_response)
        else:
            logger.warning("No valid responses generated.")
    except Exception as e:
        logger.error(f"General error in autocomplete: {e}")

if __name__ == '__main__':
    gpt2_models = [
        "gpt2",
        "gpt2-medium",
        "gpt2-large",
        "gpt2-xl"
    ]

    programming_models = [
        "google/bert2bert_L-24_uncased",
        "microsoft/CodeGPT-small-java",
        "microsoft/CodeGPT-small-python",
        "Salesforce/codegen-350M-multi"
    ]

    load_and_store_models(gpt2_models + programming_models)

    uvicorn.run(app=app, host='0.0.0.0', port=int(os.getenv("PORT", 8001)))