File size: 8,581 Bytes
81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 9eb4861 8c46119 9eb4861 8c46119 9eb4861 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 f742aec 81ca2c9 8c46119 81ca2c9 9eb4861 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 81ca2c9 8c46119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import sys
import torch
import uvicorn
import redis
import numpy as np
from fastapi import FastAPI, Query, BackgroundTasks
from fastapi.responses import HTMLResponse
from starlette.middleware.cors import CORSMiddleware
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel, pipeline
from loguru import logger
from dotenv import load_dotenv
from sklearn.metrics.pairwise import cosine_similarity
sys.path.append('..')
load_dotenv()
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
kaggle_username = os.getenv('KAGGLE_USERNAME')
kaggle_key = os.getenv('KAGGLE_KEY')
redis_host = os.getenv('REDIS_HOST', 'localhost')
redis_port = os.getenv('REDIS_PORT', 6379)
redis_password = os.getenv('REDIS_PASSWORD', 'huggingface_spaces')
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password, decode_responses=True)
MAX_ITEMS_PER_TABLE = 10000
def get_current_table_index():
return int(redis_client.get("current_table_index") or 0)
def increment_table_index():
current_index = get_current_table_index()
redis_client.set("current_table_index", current_index + 1)
def store_to_redis_table(key, content):
current_index = get_current_table_index()
table_name = f"table_{current_index}"
item_count = redis_client.hlen(table_name)
if item_count >= MAX_ITEMS_PER_TABLE:
increment_table_index()
table_name = f"table_{get_current_table_index()}"
redis_client.hset(table_name, key, content)
def load_and_store_models(model_names):
for name in model_names:
try:
model = GPT2LMHeadModel.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)
sample_text = "Sample input"
generated_text = model.generate(tokenizer.encode(sample_text, return_tensors="pt"), max_length=50)
decoded_text = tokenizer.decode(generated_text[0], skip_special_tokens=True)
store_to_redis_table(name, decoded_text)
redis_client.hset("models", name, decoded_text)
except Exception as e:
logger.error(f"Error loading model {name}: {e}")
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
message_history = []
@app.get('/')
async def index():
chat_history = redis_client.hgetall(f"table_{get_current_table_index()}")
chat_history_html = "".join(f"<div class='bot-message'>{msg}</div>" for msg in chat_history.values())
html_code = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ChatGPT Chatbot</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 0; padding: 0; background-color: #f4f4f4; }}
.container {{ max-width: 800px; margin: auto; padding: 20px; }}
.chat-container {{ background-color: #fff; border-radius: 8px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); overflow: hidden; margin-bottom: 20px; }}
.chat-box {{ height: 300px; overflow-y: auto; padding: 10px; }}
.chat-input {{ width: calc(100% - 20px); border: none; border-top: 1px solid #ddd; padding: 10px; font-size: 16px; outline: none; }}
.user-message, .bot-message {{ margin-bottom: 10px; padding: 8px 12px; border-radius: 8px; max-width: 70%; word-wrap: break-word; }}
.user-message {{ background-color: #007bff; color: #fff; align-self: flex-end; }}
.bot-message {{ background-color: #4CAF50; color: #fff; }}
</style>
</head>
<body>
<div class="container">
<h1 style="text-align: center;">ChatGPT Chatbot</h1>
<div class="chat-container" id="chat-container">
<div class="chat-box" id="chat-box">
{chat_history_html}
</div>
<input type="text" class="chat-input" id="user-input" placeholder="Type your message...">
</div>
</div>
<script>
const userInput = document.getElementById('user-input');
userInput.addEventListener('keyup', function(event) {{
if (event.key === 'Enter') {{
event.preventDefault();
sendMessage();
}}
}});
function sendMessage() {{
const userMessage = userInput.value.trim();
if (userMessage === '') return;
appendMessage('user', userMessage);
userInput.value = '';
fetch(`/autocomplete?q=` + encodeURIComponent(userMessage))
.then(response => response.json())
.then(data => {{
fetch(`/get_response?q=` + encodeURIComponent(userMessage))
.then(response => response.json())
.then(data => {{
const botMessage = data.response;
appendMessage('bot', botMessage);
}})
.catch(error => {{
console.error('Error:', error);
}});
}})
.catch(error => {{
console.error('Error:', error);
}});
}}
function appendMessage(sender, message) {{
const chatBox = document.getElementById('chat-box');
const messageElement = document.createElement('div');
messageElement.className = sender + '-message';
messageElement.innerText = message;
chatBox.appendChild(messageElement);
}}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code, status_code=200)
def calculate_similarity(base_text, candidate_texts):
base_vector = np.array([len(base_text)])
similarities = []
for text in candidate_texts:
candidate_vector = np.array([len(text)])
similarity = cosine_similarity([base_vector], [candidate_vector])
similarities.append(similarity[0][0])
return similarities
@app.get('/autocomplete')
async def autocomplete(q: str = Query(..., title='query'), background_tasks: BackgroundTasks = BackgroundTasks()): # Corrección: Mover background_tasks al final
global message_history
message_history.append(('user', q))
background_tasks.add_task(generate_responses, q)
return {"status": "Processing request, please wait..."}
@app.get('/get_response')
async def get_response(q: str = Query(..., title='query')):
response = redis_client.hget("responses", q)
return {"response": response}
def generate_responses(q):
generated_responses = []
try:
for model_name in redis_client.hkeys("models"):
try:
model_data = redis_client.hget("models", model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
text_generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
generated_response = text_generation_pipeline(q, do_sample=True, max_length=50, num_return_sequences=5)
generated_responses.extend([response['generated_text'] for response in generated_response])
except Exception as e:
logger.error(f"Error generating response with model {model_name}: {e}")
if generated_responses:
similarities = calculate_similarity(q, generated_responses)
most_coherent_response = generated_responses[np.argmax(similarities)]
store_to_redis_table(q, "\n".join(generated_responses))
redis_client.hset("responses", q, most_coherent_response)
else:
logger.warning("No valid responses generated.")
except Exception as e:
logger.error(f"General error in autocomplete: {e}")
if __name__ == '__main__':
gpt2_models = [
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl"
]
programming_models = [
"google/bert2bert_L-24_uncased",
"microsoft/CodeGPT-small-java",
"microsoft/CodeGPT-small-python",
"Salesforce/codegen-350M-multi"
]
load_and_store_models(gpt2_models + programming_models)
uvicorn.run(app=app, host='0.0.0.0', port=int(os.getenv("PORT", 8001))) |