|
import sys, os
|
|
sys.path.append(os.getcwd())
|
|
|
|
from pathlib import Path
|
|
import json
|
|
import shutil
|
|
import argparse
|
|
|
|
import csv
|
|
import torchaudio
|
|
from tqdm import tqdm
|
|
from datasets.arrow_writer import ArrowWriter
|
|
|
|
from model.utils import (
|
|
convert_char_to_pinyin,
|
|
)
|
|
|
|
PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
|
|
|
def is_csv_wavs_format(input_dataset_dir):
|
|
fpath = Path(input_dataset_dir)
|
|
metadata = fpath / "metadata.csv"
|
|
wavs = fpath / 'wavs'
|
|
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir()
|
|
|
|
|
|
def prepare_csv_wavs_dir(input_dir):
|
|
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}"
|
|
input_dir = Path(input_dir)
|
|
metadata_path = input_dir / "metadata.csv"
|
|
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix())
|
|
|
|
sub_result, durations = [], []
|
|
vocab_set = set()
|
|
polyphone = True
|
|
for audio_path, text in audio_path_text_pairs:
|
|
if not Path(audio_path).exists():
|
|
print(f"audio {audio_path} not found, skipping")
|
|
continue
|
|
audio_duration = get_audio_duration(audio_path)
|
|
|
|
text = convert_char_to_pinyin([text], polyphone=polyphone)[0]
|
|
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration})
|
|
durations.append(audio_duration)
|
|
vocab_set.update(list(text))
|
|
|
|
return sub_result, durations, vocab_set
|
|
|
|
def get_audio_duration(audio_path):
|
|
audio, sample_rate = torchaudio.load(audio_path)
|
|
num_channels = audio.shape[0]
|
|
return audio.shape[1] / (sample_rate * num_channels)
|
|
|
|
def read_audio_text_pairs(csv_file_path):
|
|
audio_text_pairs = []
|
|
|
|
parent = Path(csv_file_path).parent
|
|
with open(csv_file_path, mode='r', newline='', encoding='utf-8') as csvfile:
|
|
reader = csv.reader(csvfile, delimiter='|')
|
|
next(reader)
|
|
for row in reader:
|
|
if len(row) >= 2:
|
|
audio_file = row[0].strip()
|
|
text = row[1].strip()
|
|
audio_file_path = parent / audio_file
|
|
audio_text_pairs.append((audio_file_path.as_posix(), text))
|
|
|
|
return audio_text_pairs
|
|
|
|
|
|
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune):
|
|
out_dir = Path(out_dir)
|
|
|
|
out_dir.mkdir(exist_ok=True, parents=True)
|
|
print(f"\nSaving to {out_dir} ...")
|
|
|
|
|
|
|
|
raw_arrow_path = out_dir / "raw.arrow"
|
|
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer:
|
|
for line in tqdm(result, desc=f"Writing to raw.arrow ..."):
|
|
writer.write(line)
|
|
|
|
|
|
dur_json_path = out_dir / "duration.json"
|
|
with open(dur_json_path.as_posix(), 'w', encoding='utf-8') as f:
|
|
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
|
|
|
|
|
|
|
|
|
|
|
voca_out_path = out_dir / "vocab.txt"
|
|
with open(voca_out_path.as_posix(), "w") as f:
|
|
for vocab in sorted(text_vocab_set):
|
|
f.write(vocab + "\n")
|
|
|
|
if is_finetune:
|
|
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
|
|
shutil.copy2(file_vocab_finetune, voca_out_path)
|
|
else:
|
|
with open(voca_out_path, "w") as f:
|
|
for vocab in sorted(text_vocab_set):
|
|
f.write(vocab + "\n")
|
|
|
|
dataset_name = out_dir.stem
|
|
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
|
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
|
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
|
|
|
|
|
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True):
|
|
if is_finetune:
|
|
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}"
|
|
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir)
|
|
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune)
|
|
|
|
|
|
def cli():
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Prepare and save dataset.")
|
|
parser.add_argument('inp_dir', type=str, help="Input directory containing the data.")
|
|
parser.add_argument('out_dir', type=str, help="Output directory to save the prepared data.")
|
|
parser.add_argument('--pretrain', action='store_true', help="Enable for new pretrain, otherwise is a fine-tune")
|
|
|
|
args = parser.parse_args()
|
|
|
|
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain)
|
|
|
|
if __name__ == "__main__":
|
|
cli()
|
|
|