|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
""" Res2Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Res2Conv1dReluBn(nn.Module): |
|
""" |
|
in_channels == out_channels == channels |
|
""" |
|
|
|
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): |
|
super().__init__() |
|
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) |
|
self.scale = scale |
|
self.width = channels // scale |
|
self.nums = scale if scale == 1 else scale - 1 |
|
|
|
self.convs = [] |
|
self.bns = [] |
|
for i in range(self.nums): |
|
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) |
|
self.bns.append(nn.BatchNorm1d(self.width)) |
|
self.convs = nn.ModuleList(self.convs) |
|
self.bns = nn.ModuleList(self.bns) |
|
|
|
def forward(self, x): |
|
out = [] |
|
spx = torch.split(x, self.width, 1) |
|
for i in range(self.nums): |
|
if i == 0: |
|
sp = spx[i] |
|
else: |
|
sp = sp + spx[i] |
|
|
|
sp = self.convs[i](sp) |
|
sp = self.bns[i](F.relu(sp)) |
|
out.append(sp) |
|
if self.scale != 1: |
|
out.append(spx[self.nums]) |
|
out = torch.cat(out, dim=1) |
|
|
|
return out |
|
|
|
|
|
""" Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Conv1dReluBn(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): |
|
super().__init__() |
|
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) |
|
self.bn = nn.BatchNorm1d(out_channels) |
|
|
|
def forward(self, x): |
|
return self.bn(F.relu(self.conv(x))) |
|
|
|
|
|
""" The SE connection of 1D case. |
|
""" |
|
|
|
|
|
class SE_Connect(nn.Module): |
|
def __init__(self, channels, se_bottleneck_dim=128): |
|
super().__init__() |
|
self.linear1 = nn.Linear(channels, se_bottleneck_dim) |
|
self.linear2 = nn.Linear(se_bottleneck_dim, channels) |
|
|
|
def forward(self, x): |
|
out = x.mean(dim=2) |
|
out = F.relu(self.linear1(out)) |
|
out = torch.sigmoid(self.linear2(out)) |
|
out = x * out.unsqueeze(2) |
|
|
|
return out |
|
|
|
|
|
""" SE-Res2Block of the ECAPA-TDNN architecture. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SE_Res2Block(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): |
|
super().__init__() |
|
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) |
|
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) |
|
|
|
self.shortcut = None |
|
if in_channels != out_channels: |
|
self.shortcut = nn.Conv1d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
) |
|
|
|
def forward(self, x): |
|
residual = x |
|
if self.shortcut: |
|
residual = self.shortcut(x) |
|
|
|
x = self.Conv1dReluBn1(x) |
|
x = self.Res2Conv1dReluBn(x) |
|
x = self.Conv1dReluBn2(x) |
|
x = self.SE_Connect(x) |
|
|
|
return x + residual |
|
|
|
|
|
""" Attentive weighted mean and standard deviation pooling. |
|
""" |
|
|
|
|
|
class AttentiveStatsPool(nn.Module): |
|
def __init__(self, in_dim, attention_channels=128, global_context_att=False): |
|
super().__init__() |
|
self.global_context_att = global_context_att |
|
|
|
|
|
if global_context_att: |
|
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) |
|
else: |
|
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) |
|
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) |
|
|
|
def forward(self, x): |
|
if self.global_context_att: |
|
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) |
|
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) |
|
x_in = torch.cat((x, context_mean, context_std), dim=1) |
|
else: |
|
x_in = x |
|
|
|
|
|
alpha = torch.tanh(self.linear1(x_in)) |
|
|
|
alpha = torch.softmax(self.linear2(alpha), dim=2) |
|
mean = torch.sum(alpha * x, dim=2) |
|
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 |
|
std = torch.sqrt(residuals.clamp(min=1e-9)) |
|
return torch.cat([mean, std], dim=1) |
|
|
|
|
|
class ECAPA_TDNN(nn.Module): |
|
def __init__( |
|
self, |
|
feat_dim=80, |
|
channels=512, |
|
emb_dim=192, |
|
global_context_att=False, |
|
feat_type="wavlm_large", |
|
sr=16000, |
|
feature_selection="hidden_states", |
|
update_extract=False, |
|
config_path=None, |
|
): |
|
super().__init__() |
|
|
|
self.feat_type = feat_type |
|
self.feature_selection = feature_selection |
|
self.update_extract = update_extract |
|
self.sr = sr |
|
|
|
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True |
|
try: |
|
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main") |
|
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path) |
|
except: |
|
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type) |
|
|
|
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( |
|
self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention" |
|
): |
|
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False |
|
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( |
|
self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention" |
|
): |
|
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False |
|
|
|
self.feat_num = self.get_feat_num() |
|
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) |
|
|
|
if feat_type != "fbank" and feat_type != "mfcc": |
|
freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"] |
|
for name, param in self.feature_extract.named_parameters(): |
|
for freeze_val in freeze_list: |
|
if freeze_val in name: |
|
param.requires_grad = False |
|
break |
|
|
|
if not self.update_extract: |
|
for param in self.feature_extract.parameters(): |
|
param.requires_grad = False |
|
|
|
self.instance_norm = nn.InstanceNorm1d(feat_dim) |
|
|
|
self.channels = [channels] * 4 + [1536] |
|
|
|
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) |
|
self.layer2 = SE_Res2Block( |
|
self.channels[0], |
|
self.channels[1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=2, |
|
dilation=2, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
self.layer3 = SE_Res2Block( |
|
self.channels[1], |
|
self.channels[2], |
|
kernel_size=3, |
|
stride=1, |
|
padding=3, |
|
dilation=3, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
self.layer4 = SE_Res2Block( |
|
self.channels[2], |
|
self.channels[3], |
|
kernel_size=3, |
|
stride=1, |
|
padding=4, |
|
dilation=4, |
|
scale=8, |
|
se_bottleneck_dim=128, |
|
) |
|
|
|
|
|
cat_channels = channels * 3 |
|
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) |
|
self.pooling = AttentiveStatsPool( |
|
self.channels[-1], attention_channels=128, global_context_att=global_context_att |
|
) |
|
self.bn = nn.BatchNorm1d(self.channels[-1] * 2) |
|
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) |
|
|
|
def get_feat_num(self): |
|
self.feature_extract.eval() |
|
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] |
|
with torch.no_grad(): |
|
features = self.feature_extract(wav) |
|
select_feature = features[self.feature_selection] |
|
if isinstance(select_feature, (list, tuple)): |
|
return len(select_feature) |
|
else: |
|
return 1 |
|
|
|
def get_feat(self, x): |
|
if self.update_extract: |
|
x = self.feature_extract([sample for sample in x]) |
|
else: |
|
with torch.no_grad(): |
|
if self.feat_type == "fbank" or self.feat_type == "mfcc": |
|
x = self.feature_extract(x) + 1e-6 |
|
else: |
|
x = self.feature_extract([sample for sample in x]) |
|
|
|
if self.feat_type == "fbank": |
|
x = x.log() |
|
|
|
if self.feat_type != "fbank" and self.feat_type != "mfcc": |
|
x = x[self.feature_selection] |
|
if isinstance(x, (list, tuple)): |
|
x = torch.stack(x, dim=0) |
|
else: |
|
x = x.unsqueeze(0) |
|
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) |
|
x = (norm_weights * x).sum(dim=0) |
|
x = torch.transpose(x, 1, 2) + 1e-6 |
|
|
|
x = self.instance_norm(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.get_feat(x) |
|
|
|
out1 = self.layer1(x) |
|
out2 = self.layer2(out1) |
|
out3 = self.layer3(out2) |
|
out4 = self.layer4(out3) |
|
|
|
out = torch.cat([out2, out3, out4], dim=1) |
|
out = F.relu(self.conv(out)) |
|
out = self.bn(self.pooling(out)) |
|
out = self.linear(out) |
|
|
|
return out |
|
|
|
|
|
def ECAPA_TDNN_SMALL( |
|
feat_dim, |
|
emb_dim=256, |
|
feat_type="wavlm_large", |
|
sr=16000, |
|
feature_selection="hidden_states", |
|
update_extract=False, |
|
config_path=None, |
|
): |
|
return ECAPA_TDNN( |
|
feat_dim=feat_dim, |
|
channels=512, |
|
emb_dim=emb_dim, |
|
feat_type=feat_type, |
|
sr=sr, |
|
feature_selection=feature_selection, |
|
update_extract=update_extract, |
|
config_path=config_path, |
|
) |
|
|