|
from __future__ import annotations |
|
|
|
import os |
|
import random |
|
from collections import defaultdict |
|
from importlib.resources import files |
|
|
|
import torch |
|
from torch.nn.utils.rnn import pad_sequence |
|
|
|
import jieba |
|
from pypinyin import lazy_pinyin, Style |
|
|
|
|
|
|
|
|
|
|
|
def seed_everything(seed=0): |
|
random.seed(seed) |
|
os.environ["PYTHONHASHSEED"] = str(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
|
|
|
|
|
|
def exists(v): |
|
return v is not None |
|
|
|
|
|
def default(v, d): |
|
return v if exists(v) else d |
|
|
|
|
|
|
|
|
|
|
|
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: |
|
if not exists(length): |
|
length = t.amax() |
|
|
|
seq = torch.arange(length, device=t.device) |
|
return seq[None, :] < t[:, None] |
|
|
|
|
|
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): |
|
max_seq_len = seq_len.max().item() |
|
seq = torch.arange(max_seq_len, device=start.device).long() |
|
start_mask = seq[None, :] >= start[:, None] |
|
end_mask = seq[None, :] < end[:, None] |
|
return start_mask & end_mask |
|
|
|
|
|
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): |
|
lengths = (frac_lengths * seq_len).long() |
|
max_start = seq_len - lengths |
|
|
|
rand = torch.rand_like(frac_lengths) |
|
start = (max_start * rand).long().clamp(min=0) |
|
end = start + lengths |
|
|
|
return mask_from_start_end_indices(seq_len, start, end) |
|
|
|
|
|
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: |
|
if not exists(mask): |
|
return t.mean(dim=1) |
|
|
|
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) |
|
num = t.sum(dim=1) |
|
den = mask.float().sum(dim=1) |
|
|
|
return num / den.clamp(min=1.0) |
|
|
|
|
|
|
|
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: |
|
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] |
|
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) |
|
return text |
|
|
|
|
|
|
|
def list_str_to_idx( |
|
text: list[str] | list[list[str]], |
|
vocab_char_map: dict[str, int], |
|
padding_value=-1, |
|
) -> int["b nt"]: |
|
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] |
|
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) |
|
return text |
|
|
|
|
|
|
|
|
|
|
|
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): |
|
""" |
|
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file |
|
- "char" for char-wise tokenizer, need .txt vocab_file |
|
- "byte" for utf-8 tokenizer |
|
- "custom" if you're directly passing in a path to the vocab.txt you want to use |
|
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols |
|
- if use "char", derived from unfiltered character & symbol counts of custom dataset |
|
- if use "byte", set to 256 (unicode byte range) |
|
""" |
|
if tokenizer in ["pinyin", "char"]: |
|
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt") |
|
with open(tokenizer_path, "r", encoding="utf-8") as f: |
|
vocab_char_map = {} |
|
for i, char in enumerate(f): |
|
vocab_char_map[char[:-1]] = i |
|
vocab_size = len(vocab_char_map) |
|
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" |
|
|
|
elif tokenizer == "byte": |
|
vocab_char_map = None |
|
vocab_size = 256 |
|
|
|
elif tokenizer == "custom": |
|
with open(dataset_name, "r", encoding="utf-8") as f: |
|
vocab_char_map = {} |
|
for i, char in enumerate(f): |
|
vocab_char_map[char[:-1]] = i |
|
vocab_size = len(vocab_char_map) |
|
|
|
return vocab_char_map, vocab_size |
|
|
|
|
|
|
|
|
|
|
|
def convert_char_to_pinyin(text_list, polyphone=True): |
|
final_text_list = [] |
|
god_knows_why_en_testset_contains_zh_quote = str.maketrans( |
|
{"“": '"', "”": '"', "‘": "'", "’": "'"} |
|
) |
|
custom_trans = str.maketrans({";": ","}) |
|
for text in text_list: |
|
char_list = [] |
|
text = text.translate(god_knows_why_en_testset_contains_zh_quote) |
|
text = text.translate(custom_trans) |
|
for seg in jieba.cut(text): |
|
seg_byte_len = len(bytes(seg, "UTF-8")) |
|
if seg_byte_len == len(seg): |
|
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": |
|
char_list.append(" ") |
|
char_list.extend(seg) |
|
elif polyphone and seg_byte_len == 3 * len(seg): |
|
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) |
|
for c in seg: |
|
if c not in "。,、;:?!《》【】—…": |
|
char_list.append(" ") |
|
char_list.append(c) |
|
else: |
|
for c in seg: |
|
if ord(c) < 256: |
|
char_list.extend(c) |
|
else: |
|
if c not in "。,、;:?!《》【】—…": |
|
char_list.append(" ") |
|
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) |
|
else: |
|
char_list.append(c) |
|
final_text_list.append(char_list) |
|
|
|
return final_text_list |
|
|
|
|
|
|
|
|
|
|
|
def repetition_found(text, length=2, tolerance=10): |
|
pattern_count = defaultdict(int) |
|
for i in range(len(text) - length + 1): |
|
pattern = text[i : i + length] |
|
pattern_count[pattern] += 1 |
|
for pattern, count in pattern_count.items(): |
|
if count > tolerance: |
|
return True |
|
return False |
|
|