|
import math |
|
import os |
|
import random |
|
import string |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
|
|
from f5_tts.model.modules import MelSpec |
|
from f5_tts.model.utils import convert_char_to_pinyin |
|
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL |
|
|
|
|
|
|
|
def get_seedtts_testset_metainfo(metalst): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
metainfo = [] |
|
for line in lines: |
|
if len(line.strip().split("|")) == 5: |
|
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|") |
|
elif len(line.strip().split("|")) == 4: |
|
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|") |
|
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav") |
|
if not os.path.isabs(prompt_wav): |
|
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) |
|
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav)) |
|
return metainfo |
|
|
|
|
|
|
|
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
metainfo = [] |
|
for line in lines: |
|
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t") |
|
|
|
|
|
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-") |
|
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac") |
|
|
|
|
|
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-") |
|
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac") |
|
|
|
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav)) |
|
|
|
return metainfo |
|
|
|
|
|
|
|
def padded_mel_batch(ref_mels): |
|
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax() |
|
padded_ref_mels = [] |
|
for mel in ref_mels: |
|
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0) |
|
padded_ref_mels.append(padded_ref_mel) |
|
padded_ref_mels = torch.stack(padded_ref_mels) |
|
padded_ref_mels = padded_ref_mels.permute(0, 2, 1) |
|
return padded_ref_mels |
|
|
|
|
|
|
|
|
|
|
|
def get_inference_prompt( |
|
metainfo, |
|
speed=1.0, |
|
tokenizer="pinyin", |
|
polyphone=True, |
|
target_sample_rate=24000, |
|
n_mel_channels=100, |
|
hop_length=256, |
|
target_rms=0.1, |
|
use_truth_duration=False, |
|
infer_batch_size=1, |
|
num_buckets=200, |
|
min_secs=3, |
|
max_secs=40, |
|
): |
|
prompts_all = [] |
|
|
|
min_tokens = min_secs * target_sample_rate // hop_length |
|
max_tokens = max_secs * target_sample_rate // hop_length |
|
|
|
batch_accum = [0] * num_buckets |
|
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = ( |
|
[[] for _ in range(num_buckets)] for _ in range(6) |
|
) |
|
|
|
mel_spectrogram = MelSpec( |
|
target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length |
|
) |
|
|
|
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."): |
|
|
|
ref_audio, ref_sr = torchaudio.load(prompt_wav) |
|
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio))) |
|
if ref_rms < target_rms: |
|
ref_audio = ref_audio * target_rms / ref_rms |
|
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue." |
|
if ref_sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate) |
|
ref_audio = resampler(ref_audio) |
|
|
|
|
|
if len(prompt_text[-1].encode("utf-8")) == 1: |
|
prompt_text = prompt_text + " " |
|
text = [prompt_text + gt_text] |
|
if tokenizer == "pinyin": |
|
text_list = convert_char_to_pinyin(text, polyphone=polyphone) |
|
else: |
|
text_list = text |
|
|
|
|
|
ref_mel_len = ref_audio.shape[-1] // hop_length |
|
if use_truth_duration: |
|
gt_audio, gt_sr = torchaudio.load(gt_wav) |
|
if gt_sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate) |
|
gt_audio = resampler(gt_audio) |
|
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed) |
|
|
|
|
|
|
|
else: |
|
ref_text_len = len(prompt_text.encode("utf-8")) |
|
gen_text_len = len(gt_text.encode("utf-8")) |
|
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed) |
|
|
|
|
|
ref_mel = mel_spectrogram(ref_audio) |
|
ref_mel = ref_mel.squeeze(0) |
|
|
|
|
|
assert infer_batch_size > 0, "infer_batch_size should be greater than 0." |
|
assert ( |
|
min_tokens <= total_mel_len <= max_tokens |
|
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]." |
|
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets) |
|
|
|
utts[bucket_i].append(utt) |
|
ref_rms_list[bucket_i].append(ref_rms) |
|
ref_mels[bucket_i].append(ref_mel) |
|
ref_mel_lens[bucket_i].append(ref_mel_len) |
|
total_mel_lens[bucket_i].append(total_mel_len) |
|
final_text_list[bucket_i].extend(text_list) |
|
|
|
batch_accum[bucket_i] += total_mel_len |
|
|
|
if batch_accum[bucket_i] >= infer_batch_size: |
|
|
|
prompts_all.append( |
|
( |
|
utts[bucket_i], |
|
ref_rms_list[bucket_i], |
|
padded_mel_batch(ref_mels[bucket_i]), |
|
ref_mel_lens[bucket_i], |
|
total_mel_lens[bucket_i], |
|
final_text_list[bucket_i], |
|
) |
|
) |
|
batch_accum[bucket_i] = 0 |
|
( |
|
utts[bucket_i], |
|
ref_rms_list[bucket_i], |
|
ref_mels[bucket_i], |
|
ref_mel_lens[bucket_i], |
|
total_mel_lens[bucket_i], |
|
final_text_list[bucket_i], |
|
) = [], [], [], [], [], [] |
|
|
|
|
|
for bucket_i, bucket_frames in enumerate(batch_accum): |
|
if bucket_frames > 0: |
|
prompts_all.append( |
|
( |
|
utts[bucket_i], |
|
ref_rms_list[bucket_i], |
|
padded_mel_batch(ref_mels[bucket_i]), |
|
ref_mel_lens[bucket_i], |
|
total_mel_lens[bucket_i], |
|
final_text_list[bucket_i], |
|
) |
|
) |
|
|
|
random.seed(666) |
|
random.shuffle(prompts_all) |
|
|
|
return prompts_all |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_seed_tts_test(metalst, gen_wav_dir, gpus): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
|
|
test_set_ = [] |
|
for line in tqdm(lines): |
|
if len(line.strip().split("|")) == 5: |
|
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|") |
|
elif len(line.strip().split("|")) == 4: |
|
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|") |
|
|
|
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")): |
|
continue |
|
gen_wav = os.path.join(gen_wav_dir, utt + ".wav") |
|
if not os.path.isabs(prompt_wav): |
|
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) |
|
|
|
test_set_.append((gen_wav, prompt_wav, gt_text)) |
|
|
|
num_jobs = len(gpus) |
|
if num_jobs == 1: |
|
return [(gpus[0], test_set_)] |
|
|
|
wav_per_job = len(test_set_) // num_jobs + 1 |
|
test_set = [] |
|
for i in range(num_jobs): |
|
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job])) |
|
|
|
return test_set |
|
|
|
|
|
|
|
|
|
|
|
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
|
|
test_set_ = [] |
|
for line in tqdm(lines): |
|
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t") |
|
|
|
if eval_ground_truth: |
|
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-") |
|
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac") |
|
else: |
|
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")): |
|
raise FileNotFoundError(f"Generated wav not found: {gen_utt}") |
|
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav") |
|
|
|
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-") |
|
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac") |
|
|
|
test_set_.append((gen_wav, ref_wav, gen_txt)) |
|
|
|
num_jobs = len(gpus) |
|
if num_jobs == 1: |
|
return [(gpus[0], test_set_)] |
|
|
|
wav_per_job = len(test_set_) // num_jobs + 1 |
|
test_set = [] |
|
for i in range(num_jobs): |
|
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job])) |
|
|
|
return test_set |
|
|
|
|
|
|
|
|
|
|
|
def load_asr_model(lang, ckpt_dir=""): |
|
if lang == "zh": |
|
from funasr import AutoModel |
|
|
|
model = AutoModel( |
|
model=os.path.join(ckpt_dir, "paraformer-zh"), |
|
|
|
|
|
|
|
disable_update=True, |
|
) |
|
elif lang == "en": |
|
from faster_whisper import WhisperModel |
|
|
|
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir |
|
model = WhisperModel(model_size, device="cuda", compute_type="float16") |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def run_asr_wer(args): |
|
rank, lang, test_set, ckpt_dir = args |
|
|
|
if lang == "zh": |
|
import zhconv |
|
|
|
torch.cuda.set_device(rank) |
|
elif lang == "en": |
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank) |
|
else: |
|
raise NotImplementedError( |
|
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now." |
|
) |
|
|
|
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir) |
|
|
|
from zhon.hanzi import punctuation |
|
|
|
punctuation_all = punctuation + string.punctuation |
|
wers = [] |
|
|
|
from jiwer import compute_measures |
|
|
|
for gen_wav, prompt_wav, truth in tqdm(test_set): |
|
if lang == "zh": |
|
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True) |
|
hypo = res[0]["text"] |
|
hypo = zhconv.convert(hypo, "zh-cn") |
|
elif lang == "en": |
|
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en") |
|
hypo = "" |
|
for segment in segments: |
|
hypo = hypo + " " + segment.text |
|
|
|
|
|
|
|
|
|
for x in punctuation_all: |
|
truth = truth.replace(x, "") |
|
hypo = hypo.replace(x, "") |
|
|
|
truth = truth.replace(" ", " ") |
|
hypo = hypo.replace(" ", " ") |
|
|
|
if lang == "zh": |
|
truth = " ".join([x for x in truth]) |
|
hypo = " ".join([x for x in hypo]) |
|
elif lang == "en": |
|
truth = truth.lower() |
|
hypo = hypo.lower() |
|
|
|
measures = compute_measures(truth, hypo) |
|
wer = measures["wer"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
wers.append(wer) |
|
|
|
return wers |
|
|
|
|
|
|
|
|
|
|
|
def run_sim(args): |
|
rank, test_set, ckpt_dir = args |
|
device = f"cuda:{rank}" |
|
|
|
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None) |
|
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage) |
|
model.load_state_dict(state_dict["model"], strict=False) |
|
|
|
use_gpu = True if torch.cuda.is_available() else False |
|
if use_gpu: |
|
model = model.cuda(device) |
|
model.eval() |
|
|
|
sim_list = [] |
|
for wav1, wav2, truth in tqdm(test_set): |
|
wav1, sr1 = torchaudio.load(wav1) |
|
wav2, sr2 = torchaudio.load(wav2) |
|
|
|
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000) |
|
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000) |
|
wav1 = resample1(wav1) |
|
wav2 = resample2(wav2) |
|
|
|
if use_gpu: |
|
wav1 = wav1.cuda(device) |
|
wav2 = wav2.cuda(device) |
|
with torch.no_grad(): |
|
emb1 = model(wav1) |
|
emb2 = model(wav2) |
|
|
|
sim = F.cosine_similarity(emb1, emb2)[0].item() |
|
|
|
sim_list.append(sim) |
|
|
|
return sim_list |
|
|