|
import argparse |
|
import codecs |
|
import re |
|
import tempfile |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import soundfile as sf |
|
import tomli |
|
import torch |
|
import torchaudio |
|
import tqdm |
|
from cached_path import cached_path |
|
from einops import rearrange |
|
from pydub import AudioSegment, silence |
|
from transformers import pipeline |
|
from vocos import Vocos |
|
|
|
from model import CFM, DiT, MMDiT, UNetT |
|
from model.utils import (convert_char_to_pinyin, get_tokenizer, |
|
load_checkpoint, save_spectrogram) |
|
|
|
parser = argparse.ArgumentParser( |
|
prog="python3 inference-cli.py", |
|
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.", |
|
epilog="Specify options above to override one or more settings from config.", |
|
) |
|
parser.add_argument( |
|
"-c", |
|
"--config", |
|
help="Configuration file. Default=cli-config.toml", |
|
default="inference-cli.toml", |
|
) |
|
parser.add_argument( |
|
"-m", |
|
"--model", |
|
help="F5-TTS | E2-TTS", |
|
) |
|
parser.add_argument( |
|
"-p", |
|
"--ckpt_file", |
|
help="The Checkpoint .pt", |
|
) |
|
parser.add_argument( |
|
"-v", |
|
"--vocab_file", |
|
help="The vocab .txt", |
|
) |
|
parser.add_argument( |
|
"-r", |
|
"--ref_audio", |
|
type=str, |
|
help="Reference audio file < 15 seconds." |
|
) |
|
parser.add_argument( |
|
"-s", |
|
"--ref_text", |
|
type=str, |
|
default="666", |
|
help="Subtitle for the reference audio." |
|
) |
|
parser.add_argument( |
|
"-t", |
|
"--gen_text", |
|
type=str, |
|
help="Text to generate.", |
|
) |
|
parser.add_argument( |
|
"-f", |
|
"--gen_file", |
|
type=str, |
|
help="File with text to generate. Ignores --text", |
|
) |
|
parser.add_argument( |
|
"-o", |
|
"--output_dir", |
|
type=str, |
|
help="Path to output folder..", |
|
) |
|
parser.add_argument( |
|
"--remove_silence", |
|
help="Remove silence.", |
|
) |
|
parser.add_argument( |
|
"--load_vocoder_from_local", |
|
action="store_true", |
|
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz", |
|
) |
|
args = parser.parse_args() |
|
|
|
config = tomli.load(open(args.config, "rb")) |
|
|
|
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"] |
|
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"] |
|
gen_text = args.gen_text if args.gen_text else config["gen_text"] |
|
gen_file = args.gen_file if args.gen_file else config["gen_file"] |
|
if gen_file: |
|
gen_text = codecs.open(gen_file, "r", "utf-8").read() |
|
output_dir = args.output_dir if args.output_dir else config["output_dir"] |
|
model = args.model if args.model else config["model"] |
|
ckpt_file = args.ckpt_file if args.ckpt_file else "" |
|
vocab_file = args.vocab_file if args.vocab_file else "" |
|
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"] |
|
wave_path = Path(output_dir)/"out.wav" |
|
spectrogram_path = Path(output_dir)/"out.png" |
|
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz" |
|
|
|
device = ( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else "mps" if torch.backends.mps.is_available() else "cpu" |
|
) |
|
|
|
if args.load_vocoder_from_local: |
|
print(f"Load vocos from local path {vocos_local_path}") |
|
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml") |
|
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device) |
|
vocos.load_state_dict(state_dict) |
|
vocos.eval() |
|
else: |
|
print("Download Vocos from huggingface charactr/vocos-mel-24khz") |
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") |
|
|
|
print(f"Using {device} device") |
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
target_rms = 0.1 |
|
nfe_step = 32 |
|
cfg_strength = 2.0 |
|
ode_method = "euler" |
|
sway_sampling_coef = -1.0 |
|
speed = 1.0 |
|
|
|
fix_duration = None |
|
|
|
def load_model(model_cls, model_cfg, ckpt_path,file_vocab): |
|
|
|
if file_vocab=="": |
|
file_vocab="Emilia_ZH_EN" |
|
tokenizer="pinyin" |
|
else: |
|
tokenizer="custom" |
|
|
|
print("\nvocab : ", vocab_file,tokenizer) |
|
print("tokenizer : ", tokenizer) |
|
print("model : ", ckpt_path,"\n") |
|
|
|
vocab_char_map, vocab_size = get_tokenizer(file_vocab, tokenizer) |
|
model = CFM( |
|
transformer=model_cls( |
|
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels |
|
), |
|
mel_spec_kwargs=dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
), |
|
odeint_kwargs=dict( |
|
method=ode_method, |
|
), |
|
vocab_char_map=vocab_char_map, |
|
).to(device) |
|
|
|
model = load_checkpoint(model, ckpt_path, device, use_ema = True) |
|
|
|
return model |
|
|
|
|
|
F5TTS_model_cfg = dict( |
|
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4 |
|
) |
|
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
|
|
if model == "F5-TTS": |
|
|
|
if ckpt_file == "": |
|
repo_name= "F5-TTS" |
|
exp_name = "F5TTS_Base" |
|
ckpt_step= 1200000 |
|
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors")) |
|
|
|
ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,vocab_file) |
|
|
|
elif model == "E2-TTS": |
|
if ckpt_file == "": |
|
repo_name= "E2-TTS" |
|
exp_name = "E2TTS_Base" |
|
ckpt_step= 1200000 |
|
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors")) |
|
|
|
ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,vocab_file) |
|
|
|
asr_pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model="openai/whisper-large-v3-turbo", |
|
torch_dtype=torch.float16, |
|
device=device, |
|
) |
|
|
|
def chunk_text(text, max_chars=135): |
|
""" |
|
Splits the input text into chunks, each with a maximum number of characters. |
|
Args: |
|
text (str): The text to be split. |
|
max_chars (int): The maximum number of characters per chunk. |
|
Returns: |
|
List[str]: A list of text chunks. |
|
""" |
|
chunks = [] |
|
current_chunk = "" |
|
|
|
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text) |
|
|
|
for sentence in sentences: |
|
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars: |
|
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence |
|
else: |
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence |
|
|
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
|
|
return chunks |
|
|
|
|
|
|
|
|
|
|
|
def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence, cross_fade_duration=0.15): |
|
audio, sr = ref_audio |
|
if audio.shape[0] > 1: |
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
rms = torch.sqrt(torch.mean(torch.square(audio))) |
|
if rms < target_rms: |
|
audio = audio * target_rms / rms |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) |
|
audio = resampler(audio) |
|
audio = audio.to(device) |
|
|
|
generated_waves = [] |
|
spectrograms = [] |
|
|
|
if len(ref_text[-1].encode('utf-8')) == 1: |
|
ref_text = ref_text + " " |
|
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)): |
|
|
|
text_list = [ref_text + gen_text] |
|
final_text_list = convert_char_to_pinyin(text_list) |
|
|
|
|
|
ref_audio_len = audio.shape[-1] // hop_length |
|
ref_text_len = len(ref_text.encode('utf-8')) |
|
gen_text_len = len(gen_text.encode('utf-8')) |
|
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) |
|
|
|
|
|
with torch.inference_mode(): |
|
generated, _ = ema_model.sample( |
|
cond=audio, |
|
text=final_text_list, |
|
duration=duration, |
|
steps=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
) |
|
|
|
generated = generated.to(torch.float32) |
|
generated = generated[:, ref_audio_len:, :] |
|
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n") |
|
generated_wave = vocos.decode(generated_mel_spec.cpu()) |
|
if rms < target_rms: |
|
generated_wave = generated_wave * rms / target_rms |
|
|
|
|
|
generated_wave = generated_wave.squeeze().cpu().numpy() |
|
|
|
generated_waves.append(generated_wave) |
|
spectrograms.append(generated_mel_spec[0].cpu().numpy()) |
|
|
|
|
|
if cross_fade_duration <= 0: |
|
|
|
final_wave = np.concatenate(generated_waves) |
|
else: |
|
final_wave = generated_waves[0] |
|
for i in range(1, len(generated_waves)): |
|
prev_wave = final_wave |
|
next_wave = generated_waves[i] |
|
|
|
|
|
cross_fade_samples = int(cross_fade_duration * target_sample_rate) |
|
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) |
|
|
|
if cross_fade_samples <= 0: |
|
|
|
final_wave = np.concatenate([prev_wave, next_wave]) |
|
continue |
|
|
|
|
|
prev_overlap = prev_wave[-cross_fade_samples:] |
|
next_overlap = next_wave[:cross_fade_samples] |
|
|
|
|
|
fade_out = np.linspace(1, 0, cross_fade_samples) |
|
fade_in = np.linspace(0, 1, cross_fade_samples) |
|
|
|
|
|
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in |
|
|
|
|
|
new_wave = np.concatenate([ |
|
prev_wave[:-cross_fade_samples], |
|
cross_faded_overlap, |
|
next_wave[cross_fade_samples:] |
|
]) |
|
|
|
final_wave = new_wave |
|
|
|
|
|
combined_spectrogram = np.concatenate(spectrograms, axis=1) |
|
|
|
return final_wave, combined_spectrogram |
|
|
|
def process_voice(ref_audio_orig, ref_text): |
|
print("Converting", ref_audio_orig) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
aseg = AudioSegment.from_file(ref_audio_orig) |
|
|
|
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
|
|
audio_duration = len(aseg) |
|
if audio_duration > 15000: |
|
print("Audio is over 15s, clipping to only first 15s.") |
|
aseg = aseg[:15000] |
|
aseg.export(f.name, format="wav") |
|
ref_audio = f.name |
|
|
|
if not ref_text.strip(): |
|
print("No reference text provided, transcribing reference audio...") |
|
ref_text = asr_pipe( |
|
ref_audio, |
|
chunk_length_s=30, |
|
batch_size=128, |
|
generate_kwargs={"task": "transcribe"}, |
|
return_timestamps=False, |
|
)["text"].strip() |
|
print("Finished transcription") |
|
else: |
|
print("Using custom reference text...") |
|
return ref_audio, ref_text |
|
|
|
def infer(ref_audio, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15): |
|
|
|
if not ref_text.endswith(". ") and not ref_text.endswith("。"): |
|
if ref_text.endswith("."): |
|
ref_text += " " |
|
else: |
|
ref_text += ". " |
|
|
|
|
|
audio, sr = torchaudio.load(ref_audio) |
|
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) |
|
gen_text_batches = chunk_text(gen_text, max_chars=max_chars) |
|
for i, gen_text in enumerate(gen_text_batches): |
|
print(f'gen_text {i}', gen_text) |
|
|
|
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...") |
|
return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence, cross_fade_duration) |
|
|
|
|
|
def process(ref_audio, ref_text, text_gen, model, remove_silence): |
|
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text} |
|
if "voices" not in config: |
|
voices = {"main": main_voice} |
|
else: |
|
voices = config["voices"] |
|
voices["main"] = main_voice |
|
for voice in voices: |
|
voices[voice]['ref_audio'], voices[voice]['ref_text'] = process_voice(voices[voice]['ref_audio'], voices[voice]['ref_text']) |
|
print("Voice:", voice) |
|
print("Ref_audio:", voices[voice]['ref_audio']) |
|
print("Ref_text:", voices[voice]['ref_text']) |
|
|
|
generated_audio_segments = [] |
|
reg1 = r'(?=\[\w+\])' |
|
chunks = re.split(reg1, text_gen) |
|
reg2 = r'\[(\w+)\]' |
|
for text in chunks: |
|
match = re.match(reg2, text) |
|
if not match or voice not in voices: |
|
voice = "main" |
|
else: |
|
voice = match[1] |
|
text = re.sub(reg2, "", text) |
|
gen_text = text.strip() |
|
ref_audio = voices[voice]['ref_audio'] |
|
ref_text = voices[voice]['ref_text'] |
|
print(f"Voice: {voice}") |
|
audio, spectragram = infer(ref_audio, ref_text, gen_text, model,remove_silence) |
|
generated_audio_segments.append(audio) |
|
|
|
if generated_audio_segments: |
|
final_wave = np.concatenate(generated_audio_segments) |
|
with open(wave_path, "wb") as f: |
|
sf.write(f.name, final_wave, target_sample_rate) |
|
|
|
if remove_silence: |
|
aseg = AudioSegment.from_file(f.name) |
|
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
aseg.export(f.name, format="wav") |
|
print(f.name) |
|
|
|
|
|
process(ref_audio, ref_text, gen_text, model, remove_silence) |