|
import os,sys
|
|
|
|
from transformers import pipeline
|
|
import gradio as gr
|
|
import torch
|
|
import click
|
|
import torchaudio
|
|
from glob import glob
|
|
import librosa
|
|
import numpy as np
|
|
from scipy.io import wavfile
|
|
import shutil
|
|
import time
|
|
|
|
import json
|
|
from model.utils import convert_char_to_pinyin
|
|
import signal
|
|
import psutil
|
|
import platform
|
|
import subprocess
|
|
from datasets.arrow_writer import ArrowWriter
|
|
|
|
import json
|
|
|
|
training_process = None
|
|
system = platform.system()
|
|
python_executable = sys.executable or "python"
|
|
|
|
path_data="data"
|
|
|
|
device = (
|
|
"cuda"
|
|
if torch.cuda.is_available()
|
|
else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
)
|
|
|
|
pipe = None
|
|
|
|
|
|
def get_audio_duration(audio_path):
|
|
"""Calculate the duration of an audio file."""
|
|
audio, sample_rate = torchaudio.load(audio_path)
|
|
num_channels = audio.shape[0]
|
|
return audio.shape[1] / (sample_rate * num_channels)
|
|
|
|
def clear_text(text):
|
|
"""Clean and prepare text by lowering the case and stripping whitespace."""
|
|
return text.lower().strip()
|
|
|
|
def get_rms(y,frame_length=2048,hop_length=512,pad_mode="constant",):
|
|
padding = (int(frame_length // 2), int(frame_length // 2))
|
|
y = np.pad(y, padding, mode=pad_mode)
|
|
|
|
axis = -1
|
|
|
|
out_strides = y.strides + tuple([y.strides[axis]])
|
|
|
|
x_shape_trimmed = list(y.shape)
|
|
x_shape_trimmed[axis] -= frame_length - 1
|
|
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
|
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
|
if axis < 0:
|
|
target_axis = axis - 1
|
|
else:
|
|
target_axis = axis + 1
|
|
xw = np.moveaxis(xw, -1, target_axis)
|
|
|
|
slices = [slice(None)] * xw.ndim
|
|
slices[axis] = slice(0, None, hop_length)
|
|
x = xw[tuple(slices)]
|
|
|
|
|
|
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
|
|
|
return np.sqrt(power)
|
|
|
|
class Slicer:
|
|
def __init__(
|
|
self,
|
|
sr: int,
|
|
threshold: float = -40.0,
|
|
min_length: int = 2000,
|
|
min_interval: int = 300,
|
|
hop_size: int = 20,
|
|
max_sil_kept: int = 2000,
|
|
):
|
|
if not min_length >= min_interval >= hop_size:
|
|
raise ValueError(
|
|
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
|
)
|
|
if not max_sil_kept >= hop_size:
|
|
raise ValueError(
|
|
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
|
)
|
|
min_interval = sr * min_interval / 1000
|
|
self.threshold = 10 ** (threshold / 20.0)
|
|
self.hop_size = round(sr * hop_size / 1000)
|
|
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
|
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
|
self.min_interval = round(min_interval / self.hop_size)
|
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
|
|
|
def _apply_slice(self, waveform, begin, end):
|
|
if len(waveform.shape) > 1:
|
|
return waveform[
|
|
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
|
]
|
|
else:
|
|
return waveform[
|
|
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
|
]
|
|
|
|
|
|
def slice(self, waveform):
|
|
if len(waveform.shape) > 1:
|
|
samples = waveform.mean(axis=0)
|
|
else:
|
|
samples = waveform
|
|
if samples.shape[0] <= self.min_length:
|
|
return [waveform]
|
|
rms_list = get_rms(
|
|
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
|
).squeeze(0)
|
|
sil_tags = []
|
|
silence_start = None
|
|
clip_start = 0
|
|
for i, rms in enumerate(rms_list):
|
|
|
|
if rms < self.threshold:
|
|
|
|
if silence_start is None:
|
|
silence_start = i
|
|
continue
|
|
|
|
if silence_start is None:
|
|
continue
|
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
|
need_slice_middle = (
|
|
i - silence_start >= self.min_interval
|
|
and i - clip_start >= self.min_length
|
|
)
|
|
if not is_leading_silence and not need_slice_middle:
|
|
silence_start = None
|
|
continue
|
|
|
|
if i - silence_start <= self.max_sil_kept:
|
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos))
|
|
else:
|
|
sil_tags.append((pos, pos))
|
|
clip_start = pos
|
|
elif i - silence_start <= self.max_sil_kept * 2:
|
|
pos = rms_list[
|
|
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
pos += i - self.max_sil_kept
|
|
pos_l = (
|
|
rms_list[
|
|
silence_start : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
+ silence_start
|
|
)
|
|
pos_r = (
|
|
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
|
+ i
|
|
- self.max_sil_kept
|
|
)
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
clip_start = pos_r
|
|
else:
|
|
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
|
clip_start = max(pos_r, pos)
|
|
else:
|
|
pos_l = (
|
|
rms_list[
|
|
silence_start : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
+ silence_start
|
|
)
|
|
pos_r = (
|
|
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
|
+ i
|
|
- self.max_sil_kept
|
|
)
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
else:
|
|
sil_tags.append((pos_l, pos_r))
|
|
clip_start = pos_r
|
|
silence_start = None
|
|
|
|
total_frames = rms_list.shape[0]
|
|
if (
|
|
silence_start is not None
|
|
and total_frames - silence_start >= self.min_interval
|
|
):
|
|
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
|
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
|
sil_tags.append((pos, total_frames + 1))
|
|
|
|
|
|
if len(sil_tags) == 0:
|
|
return [[waveform,0,int(total_frames*self.hop_size)]]
|
|
else:
|
|
chunks = []
|
|
if sil_tags[0][0] > 0:
|
|
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)])
|
|
for i in range(len(sil_tags) - 1):
|
|
chunks.append(
|
|
[self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)]
|
|
)
|
|
if sil_tags[-1][1] < total_frames:
|
|
chunks.append(
|
|
[self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)]
|
|
)
|
|
return chunks
|
|
|
|
|
|
def terminate_process_tree(pid, including_parent=True):
|
|
try:
|
|
parent = psutil.Process(pid)
|
|
except psutil.NoSuchProcess:
|
|
|
|
return
|
|
|
|
children = parent.children(recursive=True)
|
|
for child in children:
|
|
try:
|
|
os.kill(child.pid, signal.SIGTERM)
|
|
except OSError:
|
|
pass
|
|
if including_parent:
|
|
try:
|
|
os.kill(parent.pid, signal.SIGTERM)
|
|
except OSError:
|
|
pass
|
|
|
|
def terminate_process(pid):
|
|
if system == "Windows":
|
|
cmd = f"taskkill /t /f /pid {pid}"
|
|
os.system(cmd)
|
|
else:
|
|
terminate_process_tree(pid)
|
|
|
|
def start_training(dataset_name="",
|
|
exp_name="F5TTS_Base",
|
|
learning_rate=1e-4,
|
|
batch_size_per_gpu=400,
|
|
batch_size_type="frame",
|
|
max_samples=64,
|
|
grad_accumulation_steps=1,
|
|
max_grad_norm=1.0,
|
|
epochs=11,
|
|
num_warmup_updates=200,
|
|
save_per_updates=400,
|
|
last_per_steps=800,
|
|
finetune=True,
|
|
):
|
|
|
|
|
|
global training_process
|
|
|
|
path_project = os.path.join(path_data, dataset_name + "_pinyin")
|
|
|
|
if os.path.isdir(path_project)==False:
|
|
yield f"There is not project with name {dataset_name}",gr.update(interactive=True),gr.update(interactive=False)
|
|
return
|
|
|
|
file_raw = os.path.join(path_project,"raw.arrow")
|
|
if os.path.isfile(file_raw)==False:
|
|
yield f"There is no file {file_raw}",gr.update(interactive=True),gr.update(interactive=False)
|
|
return
|
|
|
|
|
|
if training_process is not None:
|
|
return "Train run already!",gr.update(interactive=False),gr.update(interactive=True)
|
|
|
|
yield "start train",gr.update(interactive=False),gr.update(interactive=False)
|
|
|
|
|
|
cmd = f"accelerate launch finetune-cli.py --exp_name {exp_name} " \
|
|
f"--learning_rate {learning_rate} " \
|
|
f"--batch_size_per_gpu {batch_size_per_gpu} " \
|
|
f"--batch_size_type {batch_size_type} " \
|
|
f"--max_samples {max_samples} " \
|
|
f"--grad_accumulation_steps {grad_accumulation_steps} " \
|
|
f"--max_grad_norm {max_grad_norm} " \
|
|
f"--epochs {epochs} " \
|
|
f"--num_warmup_updates {num_warmup_updates} " \
|
|
f"--save_per_updates {save_per_updates} " \
|
|
f"--last_per_steps {last_per_steps} " \
|
|
f"--dataset_name {dataset_name}"
|
|
if finetune:cmd += f" --finetune {finetune}"
|
|
|
|
print(cmd)
|
|
|
|
try:
|
|
|
|
training_process = subprocess.Popen(cmd, shell=True)
|
|
|
|
time.sleep(5)
|
|
yield "check terminal for wandb",gr.update(interactive=False),gr.update(interactive=True)
|
|
|
|
|
|
training_process.wait()
|
|
time.sleep(1)
|
|
|
|
if training_process is None:
|
|
text_info = 'train stop'
|
|
else:
|
|
text_info = "train complete !"
|
|
|
|
except Exception as e:
|
|
|
|
text_info=f"An error occurred: {str(e)}"
|
|
|
|
training_process=None
|
|
|
|
yield text_info,gr.update(interactive=True),gr.update(interactive=False)
|
|
|
|
def stop_training():
|
|
global training_process
|
|
if training_process is None:return f"Train not run !",gr.update(interactive=True),gr.update(interactive=False)
|
|
terminate_process_tree(training_process.pid)
|
|
training_process = None
|
|
return 'train stop',gr.update(interactive=True),gr.update(interactive=False)
|
|
|
|
def create_data_project(name):
|
|
name+="_pinyin"
|
|
os.makedirs(os.path.join(path_data,name),exist_ok=True)
|
|
os.makedirs(os.path.join(path_data,name,"dataset"),exist_ok=True)
|
|
|
|
def transcribe(file_audio,language="english"):
|
|
global pipe
|
|
|
|
if pipe is None:
|
|
pipe = pipeline("automatic-speech-recognition",model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16,device=device)
|
|
|
|
text_transcribe = pipe(
|
|
file_audio,
|
|
chunk_length_s=30,
|
|
batch_size=128,
|
|
generate_kwargs={"task": "transcribe","language": language},
|
|
return_timestamps=False,
|
|
)["text"].strip()
|
|
return text_transcribe
|
|
|
|
def transcribe_all(name_project,audio_files,language,user=False,progress=gr.Progress()):
|
|
name_project+="_pinyin"
|
|
path_project= os.path.join(path_data,name_project)
|
|
path_dataset = os.path.join(path_project,"dataset")
|
|
path_project_wavs = os.path.join(path_project,"wavs")
|
|
file_metadata = os.path.join(path_project,"metadata.csv")
|
|
|
|
if audio_files is None:return "You need to load an audio file."
|
|
|
|
if os.path.isdir(path_project_wavs):
|
|
shutil.rmtree(path_project_wavs)
|
|
|
|
if os.path.isfile(file_metadata):
|
|
os.remove(file_metadata)
|
|
|
|
os.makedirs(path_project_wavs,exist_ok=True)
|
|
|
|
if user:
|
|
file_audios = [file for format in ('*.wav', '*.ogg', '*.opus', '*.mp3', '*.flac') for file in glob(os.path.join(path_dataset, format))]
|
|
if file_audios==[]:return "No audio file was found in the dataset."
|
|
else:
|
|
file_audios = audio_files
|
|
|
|
|
|
alpha = 0.5
|
|
_max = 1.0
|
|
slicer = Slicer(24000)
|
|
|
|
num = 0
|
|
error_num = 0
|
|
data=""
|
|
for file_audio in progress.tqdm(file_audios, desc="transcribe files",total=len((file_audios))):
|
|
|
|
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
|
|
|
|
list_slicer=slicer.slice(audio)
|
|
for chunk, start, end in progress.tqdm(list_slicer,total=len(list_slicer), desc="slicer files"):
|
|
|
|
name_segment = os.path.join(f"segment_{num}")
|
|
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
|
|
|
|
tmp_max = np.abs(chunk).max()
|
|
if(tmp_max>1):chunk/=tmp_max
|
|
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
|
|
wavfile.write(file_segment,24000, (chunk * 32767).astype(np.int16))
|
|
|
|
try:
|
|
text=transcribe(file_segment,language)
|
|
text = text.lower().strip().replace('"',"")
|
|
|
|
data+= f"{name_segment}|{text}\n"
|
|
|
|
num+=1
|
|
except:
|
|
error_num +=1
|
|
|
|
with open(file_metadata,"w",encoding="utf-8") as f:
|
|
f.write(data)
|
|
|
|
if error_num!=[]:
|
|
error_text=f"\nerror files : {error_num}"
|
|
else:
|
|
error_text=""
|
|
|
|
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
|
|
|
|
def format_seconds_to_hms(seconds):
|
|
hours = int(seconds / 3600)
|
|
minutes = int((seconds % 3600) / 60)
|
|
seconds = seconds % 60
|
|
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
|
|
|
|
def create_metadata(name_project,progress=gr.Progress()):
|
|
name_project+="_pinyin"
|
|
path_project= os.path.join(path_data,name_project)
|
|
path_project_wavs = os.path.join(path_project,"wavs")
|
|
file_metadata = os.path.join(path_project,"metadata.csv")
|
|
file_raw = os.path.join(path_project,"raw.arrow")
|
|
file_duration = os.path.join(path_project,"duration.json")
|
|
file_vocab = os.path.join(path_project,"vocab.txt")
|
|
|
|
if os.path.isfile(file_metadata)==False: return "The file was not found in " + file_metadata
|
|
|
|
with open(file_metadata,"r",encoding="utf-8") as f:
|
|
data=f.read()
|
|
|
|
audio_path_list=[]
|
|
text_list=[]
|
|
duration_list=[]
|
|
|
|
count=data.split("\n")
|
|
lenght=0
|
|
result=[]
|
|
error_files=[]
|
|
for line in progress.tqdm(data.split("\n"),total=count):
|
|
sp_line=line.split("|")
|
|
if len(sp_line)!=2:continue
|
|
name_audio,text = sp_line[:2]
|
|
|
|
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
|
|
|
|
if os.path.isfile(file_audio)==False:
|
|
error_files.append(file_audio)
|
|
continue
|
|
|
|
duraction = get_audio_duration(file_audio)
|
|
if duraction<2 and duraction>15:continue
|
|
if len(text)<4:continue
|
|
|
|
text = clear_text(text)
|
|
text = convert_char_to_pinyin([text], polyphone = True)[0]
|
|
|
|
audio_path_list.append(file_audio)
|
|
duration_list.append(duraction)
|
|
text_list.append(text)
|
|
|
|
result.append({"audio_path": file_audio, "text": text, "duration": duraction})
|
|
|
|
lenght+=duraction
|
|
|
|
if duration_list==[]:
|
|
error_files_text="\n".join(error_files)
|
|
return f"Error: No audio files found in the specified path : \n{error_files_text}"
|
|
|
|
min_second = round(min(duration_list),2)
|
|
max_second = round(max(duration_list),2)
|
|
|
|
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
|
|
for line in progress.tqdm(result,total=len(result), desc=f"prepare data"):
|
|
writer.write(line)
|
|
|
|
with open(file_duration, 'w', encoding='utf-8') as f:
|
|
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
|
|
|
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
|
if os.path.isfile(file_vocab_finetune==False):return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
|
|
shutil.copy2(file_vocab_finetune, file_vocab)
|
|
|
|
if error_files!=[]:
|
|
error_text="error files\n" + "\n".join(error_files)
|
|
else:
|
|
error_text=""
|
|
|
|
return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"
|
|
|
|
def check_user(value):
|
|
return gr.update(visible=not value),gr.update(visible=value)
|
|
|
|
def calculate_train(name_project,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,finetune):
|
|
name_project+="_pinyin"
|
|
path_project= os.path.join(path_data,name_project)
|
|
file_duraction = os.path.join(path_project,"duration.json")
|
|
|
|
with open(file_duraction, 'r') as file:
|
|
data = json.load(file)
|
|
|
|
duration_list = data['duration']
|
|
|
|
samples = len(duration_list)
|
|
|
|
if torch.cuda.is_available():
|
|
gpu_properties = torch.cuda.get_device_properties(0)
|
|
total_memory = gpu_properties.total_memory / (1024 ** 3)
|
|
elif torch.backends.mps.is_available():
|
|
total_memory = psutil.virtual_memory().available / (1024 ** 3)
|
|
|
|
if batch_size_type=="frame":
|
|
batch = int(total_memory * 0.5)
|
|
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
|
|
batch_size_per_gpu = int(38400 / batch )
|
|
else:
|
|
batch_size_per_gpu = int(total_memory / 8)
|
|
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
|
|
batch = batch_size_per_gpu
|
|
|
|
if batch_size_per_gpu<=0:batch_size_per_gpu=1
|
|
|
|
if samples<64:
|
|
max_samples = int(samples * 0.25)
|
|
else:
|
|
max_samples = 64
|
|
|
|
num_warmup_updates = int(samples * 0.10)
|
|
save_per_updates = int(samples * 0.25)
|
|
last_per_steps =int(save_per_updates * 5)
|
|
|
|
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
|
|
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
|
|
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
|
|
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
|
|
|
|
if finetune:learning_rate=1e-4
|
|
else:learning_rate=7.5e-5
|
|
|
|
return batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,samples,learning_rate
|
|
|
|
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
|
|
try:
|
|
checkpoint = torch.load(checkpoint_path)
|
|
print("Original Checkpoint Keys:", checkpoint.keys())
|
|
|
|
ema_model_state_dict = checkpoint.get('ema_model_state_dict', None)
|
|
|
|
if ema_model_state_dict is not None:
|
|
new_checkpoint = {'ema_model_state_dict': ema_model_state_dict}
|
|
torch.save(new_checkpoint, new_checkpoint_path)
|
|
return f"New checkpoint saved at: {new_checkpoint_path}"
|
|
else:
|
|
return "No 'ema_model_state_dict' found in the checkpoint."
|
|
|
|
except Exception as e:
|
|
return f"An error occurred: {e}"
|
|
|
|
def vocab_check(project_name):
|
|
name_project = project_name + "_pinyin"
|
|
path_project = os.path.join(path_data, name_project)
|
|
|
|
file_metadata = os.path.join(path_project, "metadata.csv")
|
|
|
|
file_vocab="data/Emilia_ZH_EN_pinyin/vocab.txt"
|
|
if os.path.isfile(file_vocab)==False:
|
|
return f"the file {file_vocab} not found !"
|
|
|
|
with open(file_vocab,"r",encoding="utf-8") as f:
|
|
data=f.read()
|
|
|
|
vocab = data.split("\n")
|
|
|
|
if os.path.isfile(file_metadata)==False:
|
|
return f"the file {file_metadata} not found !"
|
|
|
|
with open(file_metadata,"r",encoding="utf-8") as f:
|
|
data=f.read()
|
|
|
|
miss_symbols=[]
|
|
miss_symbols_keep={}
|
|
for item in data.split("\n"):
|
|
sp=item.split("|")
|
|
if len(sp)!=2:continue
|
|
text=sp[1].lower().strip()
|
|
|
|
for t in text:
|
|
if (t in vocab)==False and (t in miss_symbols_keep)==False:
|
|
miss_symbols.append(t)
|
|
miss_symbols_keep[t]=t
|
|
|
|
|
|
if miss_symbols==[]:info ="You can train using your language !"
|
|
else:info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
|
|
|
|
return info
|
|
|
|
|
|
|
|
with gr.Blocks() as app:
|
|
|
|
with gr.Row():
|
|
project_name=gr.Textbox(label="project name",value="my_speak")
|
|
bt_create=gr.Button("create new project")
|
|
|
|
bt_create.click(fn=create_data_project,inputs=[project_name])
|
|
|
|
with gr.Tabs():
|
|
|
|
|
|
with gr.TabItem("transcribe Data"):
|
|
|
|
|
|
ch_manual = gr.Checkbox(label="user",value=False)
|
|
|
|
mark_info_transcribe=gr.Markdown(
|
|
"""```plaintext
|
|
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
|
|
|
|
my_speak/
|
|
β
|
|
βββ dataset/
|
|
βββ audio1.wav
|
|
βββ audio2.wav
|
|
...
|
|
```""",visible=False)
|
|
|
|
audio_speaker = gr.File(label="voice",type="filepath",file_count="multiple")
|
|
txt_lang = gr.Text(label="Language",value="english")
|
|
bt_transcribe=bt_create=gr.Button("transcribe")
|
|
txt_info_transcribe=gr.Text(label="info",value="")
|
|
bt_transcribe.click(fn=transcribe_all,inputs=[project_name,audio_speaker,txt_lang,ch_manual],outputs=[txt_info_transcribe])
|
|
ch_manual.change(fn=check_user,inputs=[ch_manual],outputs=[audio_speaker,mark_info_transcribe])
|
|
|
|
with gr.TabItem("prepare Data"):
|
|
gr.Markdown(
|
|
"""```plaintext
|
|
place all your wavs folder and your metadata.csv file in {your name project}
|
|
my_speak/
|
|
β
|
|
βββ wavs/
|
|
β βββ audio1.wav
|
|
β βββ audio2.wav
|
|
| ...
|
|
β
|
|
βββ metadata.csv
|
|
|
|
file format metadata.csv
|
|
|
|
audio1|text1
|
|
audio2|text1
|
|
...
|
|
|
|
```""")
|
|
|
|
bt_prepare=bt_create=gr.Button("prepare")
|
|
txt_info_prepare=gr.Text(label="info",value="")
|
|
bt_prepare.click(fn=create_metadata,inputs=[project_name],outputs=[txt_info_prepare])
|
|
|
|
with gr.TabItem("train Data"):
|
|
|
|
with gr.Row():
|
|
bt_calculate=bt_create=gr.Button("Auto Settings")
|
|
ch_finetune=bt_create=gr.Checkbox(label="finetune",value=True)
|
|
lb_samples = gr.Label(label="samples")
|
|
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
|
|
|
with gr.Row():
|
|
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
|
learning_rate = gr.Number(label="Learning Rate", value=1e-4, step=1e-4)
|
|
|
|
with gr.Row():
|
|
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
|
|
max_samples = gr.Number(label="Max Samples", value=16)
|
|
|
|
with gr.Row():
|
|
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
|
|
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
|
|
|
|
with gr.Row():
|
|
epochs = gr.Number(label="Epochs", value=10)
|
|
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
|
|
|
|
with gr.Row():
|
|
save_per_updates = gr.Number(label="Save per Updates", value=10)
|
|
last_per_steps = gr.Number(label="Last per Steps", value=50)
|
|
|
|
with gr.Row():
|
|
start_button = gr.Button("Start Training")
|
|
stop_button = gr.Button("Stop Training",interactive=False)
|
|
|
|
txt_info_train=gr.Text(label="info",value="")
|
|
start_button.click(fn=start_training,inputs=[project_name,exp_name,learning_rate,batch_size_per_gpu,batch_size_type,max_samples,grad_accumulation_steps,max_grad_norm,epochs,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[txt_info_train,start_button,stop_button])
|
|
stop_button.click(fn=stop_training,outputs=[txt_info_train,start_button,stop_button])
|
|
bt_calculate.click(fn=calculate_train,inputs=[project_name,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,lb_samples,learning_rate])
|
|
|
|
with gr.TabItem("reduse checkpoint"):
|
|
txt_path_checkpoint = gr.Text(label="path checkpoint :")
|
|
txt_path_checkpoint_small = gr.Text(label="path output :")
|
|
txt_info_reduse = gr.Text(label="info",value="")
|
|
reduse_button = gr.Button("reduse")
|
|
reduse_button.click(fn=extract_and_save_ema_model,inputs=[txt_path_checkpoint,txt_path_checkpoint_small],outputs=[txt_info_reduse])
|
|
|
|
with gr.TabItem("vocab check experiment"):
|
|
check_button = gr.Button("check vocab")
|
|
txt_info_check=gr.Text(label="info",value="")
|
|
check_button.click(fn=vocab_check,inputs=[project_name],outputs=[txt_info_check])
|
|
|
|
|
|
@click.command()
|
|
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
|
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
|
@click.option(
|
|
"--share",
|
|
"-s",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Share the app via Gradio share link",
|
|
)
|
|
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
|
def main(port, host, share, api):
|
|
global app
|
|
print(f"Starting app...")
|
|
app.queue(api_open=api).launch(
|
|
server_name=host, server_port=port, share=share, show_api=api
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|