|
import argparse |
|
import os |
|
import shutil |
|
|
|
from cached_path import cached_path |
|
from f5_tts.model import CFM, UNetT, DiT, Trainer |
|
from f5_tts.model.utils import get_tokenizer |
|
from f5_tts.model.dataset import load_dataset |
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
|
|
|
|
|
|
def parse_args(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Train CFM Model") |
|
|
|
parser.add_argument( |
|
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name" |
|
) |
|
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use") |
|
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training") |
|
parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU") |
|
parser.add_argument( |
|
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type" |
|
) |
|
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch") |
|
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps") |
|
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping") |
|
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs") |
|
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup steps") |
|
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps") |
|
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps") |
|
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune") |
|
parser.add_argument("--pretrain", type=str, default=None, help="Use pretrain model for finetune") |
|
parser.add_argument( |
|
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_path", |
|
type=str, |
|
default=None, |
|
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')", |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
if args.exp_name == "F5TTS_Base": |
|
wandb_resume_id = None |
|
model_cls = DiT |
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
|
if args.finetune: |
|
if args.pretrain is None: |
|
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt")) |
|
else: |
|
ckpt_path = args.pretrain |
|
elif args.exp_name == "E2TTS_Base": |
|
wandb_resume_id = None |
|
model_cls = UNetT |
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
if args.finetune: |
|
if args.pretrain is None: |
|
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt")) |
|
else: |
|
ckpt_path = args.pretrain |
|
|
|
if args.finetune: |
|
path_ckpt = os.path.join("ckpts", args.dataset_name) |
|
if not os.path.isdir(path_ckpt): |
|
os.makedirs(path_ckpt, exist_ok=True) |
|
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path))) |
|
|
|
checkpoint_path = os.path.join("ckpts", args.dataset_name) |
|
|
|
|
|
tokenizer = args.tokenizer |
|
if tokenizer == "custom": |
|
if not args.tokenizer_path: |
|
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.") |
|
tokenizer_path = args.tokenizer_path |
|
else: |
|
tokenizer_path = args.dataset_name |
|
|
|
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) |
|
|
|
mel_spec_kwargs = dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
) |
|
|
|
model = CFM( |
|
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), |
|
mel_spec_kwargs=mel_spec_kwargs, |
|
vocab_char_map=vocab_char_map, |
|
) |
|
|
|
trainer = Trainer( |
|
model, |
|
args.epochs, |
|
args.learning_rate, |
|
num_warmup_updates=args.num_warmup_updates, |
|
save_per_updates=args.save_per_updates, |
|
checkpoint_path=checkpoint_path, |
|
batch_size=args.batch_size_per_gpu, |
|
batch_size_type=args.batch_size_type, |
|
max_samples=args.max_samples, |
|
grad_accumulation_steps=args.grad_accumulation_steps, |
|
max_grad_norm=args.max_grad_norm, |
|
wandb_project=args.dataset_name, |
|
wandb_run_name=args.exp_name, |
|
wandb_resume_id=wandb_resume_id, |
|
last_per_steps=args.last_per_steps, |
|
) |
|
|
|
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) |
|
|
|
trainer.train( |
|
train_dataset, |
|
resumable_with_seed=666, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|