|
from __future__ import annotations |
|
|
|
import os |
|
import gc |
|
from tqdm import tqdm |
|
import wandb |
|
|
|
import torch |
|
from torch.optim import AdamW |
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler |
|
from torch.optim.lr_scheduler import LinearLR, SequentialLR |
|
|
|
from einops import rearrange |
|
|
|
from accelerate import Accelerator |
|
from accelerate.utils import DistributedDataParallelKwargs |
|
|
|
from ema_pytorch import EMA |
|
|
|
from model import CFM |
|
from model.utils import exists, default |
|
from model.dataset import DynamicBatchSampler, collate_fn |
|
|
|
|
|
|
|
|
|
class Trainer: |
|
def __init__( |
|
self, |
|
model: CFM, |
|
epochs, |
|
learning_rate, |
|
num_warmup_updates = 20000, |
|
save_per_updates = 1000, |
|
checkpoint_path = None, |
|
batch_size = 32, |
|
batch_size_type: str = "sample", |
|
max_samples = 32, |
|
grad_accumulation_steps = 1, |
|
max_grad_norm = 1.0, |
|
noise_scheduler: str | None = None, |
|
duration_predictor: torch.nn.Module | None = None, |
|
wandb_project = "test_e2-tts", |
|
wandb_run_name = "test_run", |
|
wandb_resume_id: str = None, |
|
last_per_steps = None, |
|
accelerate_kwargs: dict = dict(), |
|
ema_kwargs: dict = dict() |
|
): |
|
|
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True) |
|
|
|
self.accelerator = Accelerator( |
|
log_with = "wandb", |
|
kwargs_handlers = [ddp_kwargs], |
|
gradient_accumulation_steps = grad_accumulation_steps, |
|
**accelerate_kwargs |
|
) |
|
|
|
if exists(wandb_resume_id): |
|
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}} |
|
else: |
|
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}} |
|
self.accelerator.init_trackers( |
|
project_name = wandb_project, |
|
init_kwargs=init_kwargs, |
|
config={"epochs": epochs, |
|
"learning_rate": learning_rate, |
|
"num_warmup_updates": num_warmup_updates, |
|
"batch_size": batch_size, |
|
"batch_size_type": batch_size_type, |
|
"max_samples": max_samples, |
|
"grad_accumulation_steps": grad_accumulation_steps, |
|
"max_grad_norm": max_grad_norm, |
|
"gpus": self.accelerator.num_processes, |
|
"noise_scheduler": noise_scheduler} |
|
) |
|
|
|
self.model = model |
|
|
|
if self.is_main: |
|
self.ema_model = EMA( |
|
model, |
|
include_online_model = False, |
|
**ema_kwargs |
|
) |
|
|
|
self.ema_model.to(self.accelerator.device) |
|
|
|
self.epochs = epochs |
|
self.num_warmup_updates = num_warmup_updates |
|
self.save_per_updates = save_per_updates |
|
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) |
|
self.checkpoint_path = default(checkpoint_path, 'ckpts/test_e2-tts') |
|
|
|
self.batch_size = batch_size |
|
self.batch_size_type = batch_size_type |
|
self.max_samples = max_samples |
|
self.grad_accumulation_steps = grad_accumulation_steps |
|
self.max_grad_norm = max_grad_norm |
|
|
|
self.noise_scheduler = noise_scheduler |
|
|
|
self.duration_predictor = duration_predictor |
|
|
|
self.optimizer = AdamW(model.parameters(), lr=learning_rate) |
|
self.model, self.optimizer = self.accelerator.prepare( |
|
self.model, self.optimizer |
|
) |
|
|
|
@property |
|
def is_main(self): |
|
return self.accelerator.is_main_process |
|
|
|
def save_checkpoint(self, step, last=False): |
|
self.accelerator.wait_for_everyone() |
|
if self.is_main: |
|
checkpoint = dict( |
|
model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(), |
|
optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(), |
|
ema_model_state_dict = self.ema_model.state_dict(), |
|
scheduler_state_dict = self.scheduler.state_dict(), |
|
step = step |
|
) |
|
if not os.path.exists(self.checkpoint_path): |
|
os.makedirs(self.checkpoint_path) |
|
if last == True: |
|
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") |
|
print(f"Saved last checkpoint at step {step}") |
|
else: |
|
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") |
|
|
|
def load_checkpoint(self): |
|
if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not os.listdir(self.checkpoint_path): |
|
return 0 |
|
|
|
self.accelerator.wait_for_everyone() |
|
if "model_last.pt" in os.listdir(self.checkpoint_path): |
|
latest_checkpoint = "model_last.pt" |
|
else: |
|
latest_checkpoint = sorted([f for f in os.listdir(self.checkpoint_path) if f.endswith('.pt')], key=lambda x: int(''.join(filter(str.isdigit, x))))[-1] |
|
|
|
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu") |
|
|
|
if self.is_main: |
|
self.ema_model.load_state_dict(checkpoint['ema_model_state_dict']) |
|
|
|
if 'step' in checkpoint: |
|
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) |
|
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict']) |
|
if self.scheduler: |
|
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) |
|
step = checkpoint['step'] |
|
else: |
|
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]} |
|
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) |
|
step = 0 |
|
|
|
del checkpoint; gc.collect() |
|
return step |
|
|
|
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None): |
|
|
|
if exists(resumable_with_seed): |
|
generator = torch.Generator() |
|
generator.manual_seed(resumable_with_seed) |
|
else: |
|
generator = None |
|
|
|
if self.batch_size_type == "sample": |
|
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, |
|
batch_size=self.batch_size, shuffle=True, generator=generator) |
|
elif self.batch_size_type == "frame": |
|
self.accelerator.even_batches = False |
|
sampler = SequentialSampler(train_dataset) |
|
batch_sampler = DynamicBatchSampler(sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False) |
|
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, |
|
batch_sampler=batch_sampler) |
|
else: |
|
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}") |
|
|
|
|
|
|
|
warmup_steps = self.num_warmup_updates * self.accelerator.num_processes |
|
|
|
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps |
|
decay_steps = total_steps - warmup_steps |
|
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) |
|
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) |
|
self.scheduler = SequentialLR(self.optimizer, |
|
schedulers=[warmup_scheduler, decay_scheduler], |
|
milestones=[warmup_steps]) |
|
train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler) |
|
start_step = self.load_checkpoint() |
|
global_step = start_step |
|
|
|
if exists(resumable_with_seed): |
|
orig_epoch_step = len(train_dataloader) |
|
skipped_epoch = int(start_step // orig_epoch_step) |
|
skipped_batch = start_step % orig_epoch_step |
|
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) |
|
else: |
|
skipped_epoch = 0 |
|
|
|
for epoch in range(skipped_epoch, self.epochs): |
|
self.model.train() |
|
if exists(resumable_with_seed) and epoch == skipped_epoch: |
|
progress_bar = tqdm(skipped_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process, |
|
initial=skipped_batch, total=orig_epoch_step) |
|
else: |
|
progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process) |
|
|
|
for batch in progress_bar: |
|
with self.accelerator.accumulate(self.model): |
|
text_inputs = batch['text'] |
|
mel_spec = rearrange(batch['mel'], 'b d n -> b n d') |
|
mel_lengths = batch["mel_lengths"] |
|
|
|
|
|
if self.duration_predictor is not None and self.accelerator.is_local_main_process: |
|
dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations')) |
|
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step) |
|
|
|
loss, cond, pred = self.model(mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler) |
|
self.accelerator.backward(loss) |
|
|
|
if self.max_grad_norm > 0 and self.accelerator.sync_gradients: |
|
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) |
|
|
|
self.optimizer.step() |
|
self.scheduler.step() |
|
self.optimizer.zero_grad() |
|
|
|
if self.is_main: |
|
self.ema_model.update() |
|
|
|
global_step += 1 |
|
|
|
if self.accelerator.is_local_main_process: |
|
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) |
|
|
|
progress_bar.set_postfix(step=str(global_step), loss=loss.item()) |
|
|
|
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: |
|
self.save_checkpoint(global_step) |
|
|
|
if global_step % self.last_per_steps == 0: |
|
self.save_checkpoint(global_step, last=True) |
|
|
|
self.accelerator.end_training() |
|
|