|
from model import CFM, UNetT, DiT, Trainer |
|
from model.utils import get_tokenizer |
|
from model.dataset import load_dataset |
|
|
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
|
|
tokenizer = "pinyin" |
|
tokenizer_path = None |
|
dataset_name = "Emilia_ZH_EN" |
|
|
|
|
|
|
|
exp_name = "F5TTS_Base" |
|
|
|
learning_rate = 7.5e-5 |
|
|
|
batch_size_per_gpu = 38400 |
|
batch_size_type = "frame" |
|
max_samples = 64 |
|
grad_accumulation_steps = 1 |
|
max_grad_norm = 1.0 |
|
|
|
epochs = 11 |
|
num_warmup_updates = 20000 |
|
save_per_updates = 50000 |
|
last_per_steps = 5000 |
|
|
|
|
|
if exp_name == "F5TTS_Base": |
|
wandb_resume_id = None |
|
model_cls = DiT |
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
|
elif exp_name == "E2TTS_Base": |
|
wandb_resume_id = None |
|
model_cls = UNetT |
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
if tokenizer == "custom": |
|
tokenizer_path = tokenizer_path |
|
else: |
|
tokenizer_path = dataset_name |
|
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) |
|
|
|
mel_spec_kwargs = dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
) |
|
|
|
model = CFM( |
|
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), |
|
mel_spec_kwargs=mel_spec_kwargs, |
|
vocab_char_map=vocab_char_map, |
|
) |
|
|
|
trainer = Trainer( |
|
model, |
|
epochs, |
|
learning_rate, |
|
num_warmup_updates=num_warmup_updates, |
|
save_per_updates=save_per_updates, |
|
checkpoint_path=f"ckpts/{exp_name}", |
|
batch_size=batch_size_per_gpu, |
|
batch_size_type=batch_size_type, |
|
max_samples=max_samples, |
|
grad_accumulation_steps=grad_accumulation_steps, |
|
max_grad_norm=max_grad_norm, |
|
wandb_project="CFM-TTS", |
|
wandb_run_name=exp_name, |
|
wandb_resume_id=wandb_resume_id, |
|
last_per_steps=last_per_steps, |
|
) |
|
|
|
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) |
|
trainer.train( |
|
train_dataset, |
|
resumable_with_seed=666, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|