|
import json |
|
import random |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, Sampler |
|
import torchaudio |
|
from datasets import load_dataset, load_from_disk |
|
from datasets import Dataset as Dataset_ |
|
|
|
from einops import rearrange |
|
|
|
from model.modules import MelSpec |
|
|
|
|
|
class HFDataset(Dataset): |
|
def __init__( |
|
self, |
|
hf_dataset: Dataset, |
|
target_sample_rate = 24_000, |
|
n_mel_channels = 100, |
|
hop_length = 256, |
|
): |
|
self.data = hf_dataset |
|
self.target_sample_rate = target_sample_rate |
|
self.hop_length = hop_length |
|
self.mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length) |
|
|
|
def get_frame_len(self, index): |
|
row = self.data[index] |
|
audio = row['audio']['array'] |
|
sample_rate = row['audio']['sampling_rate'] |
|
return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index): |
|
row = self.data[index] |
|
audio = row['audio']['array'] |
|
|
|
|
|
|
|
sample_rate = row['audio']['sampling_rate'] |
|
duration = audio.shape[-1] / sample_rate |
|
|
|
if duration > 30 or duration < 0.3: |
|
return self.__getitem__((index + 1) % len(self.data)) |
|
|
|
audio_tensor = torch.from_numpy(audio).float() |
|
|
|
if sample_rate != self.target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate) |
|
audio_tensor = resampler(audio_tensor) |
|
|
|
audio_tensor = rearrange(audio_tensor, 't -> 1 t') |
|
|
|
mel_spec = self.mel_spectrogram(audio_tensor) |
|
|
|
mel_spec = rearrange(mel_spec, '1 d t -> d t') |
|
|
|
text = row['text'] |
|
|
|
return dict( |
|
mel_spec = mel_spec, |
|
text = text, |
|
) |
|
|
|
|
|
class CustomDataset(Dataset): |
|
def __init__( |
|
self, |
|
custom_dataset: Dataset, |
|
durations = None, |
|
target_sample_rate = 24_000, |
|
hop_length = 256, |
|
n_mel_channels = 100, |
|
preprocessed_mel = False, |
|
): |
|
self.data = custom_dataset |
|
self.durations = durations |
|
self.target_sample_rate = target_sample_rate |
|
self.hop_length = hop_length |
|
self.preprocessed_mel = preprocessed_mel |
|
if not preprocessed_mel: |
|
self.mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, hop_length=hop_length, n_mel_channels=n_mel_channels) |
|
|
|
def get_frame_len(self, index): |
|
if self.durations is not None: |
|
return self.durations[index] * self.target_sample_rate / self.hop_length |
|
return self.data[index]["duration"] * self.target_sample_rate / self.hop_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index): |
|
row = self.data[index] |
|
audio_path = row["audio_path"] |
|
text = row["text"] |
|
duration = row["duration"] |
|
|
|
if self.preprocessed_mel: |
|
mel_spec = torch.tensor(row["mel_spec"]) |
|
|
|
else: |
|
audio, source_sample_rate = torchaudio.load(audio_path) |
|
|
|
if duration > 30 or duration < 0.3: |
|
return self.__getitem__((index + 1) % len(self.data)) |
|
|
|
if source_sample_rate != self.target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate) |
|
audio = resampler(audio) |
|
|
|
mel_spec = self.mel_spectrogram(audio) |
|
mel_spec = rearrange(mel_spec, '1 d t -> d t') |
|
|
|
return dict( |
|
mel_spec = mel_spec, |
|
text = text, |
|
) |
|
|
|
|
|
|
|
|
|
class DynamicBatchSampler(Sampler[list[int]]): |
|
""" Extension of Sampler that will do the following: |
|
1. Change the batch size (essentially number of sequences) |
|
in a batch to ensure that the total number of frames are less |
|
than a certain threshold. |
|
2. Make sure the padding efficiency in the batch is high. |
|
""" |
|
|
|
def __init__(self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False): |
|
self.sampler = sampler |
|
self.frames_threshold = frames_threshold |
|
self.max_samples = max_samples |
|
|
|
indices, batches = [], [] |
|
data_source = self.sampler.data_source |
|
|
|
for idx in tqdm(self.sampler, desc=f"Sorting with sampler... if slow, check whether dataset is provided with duration"): |
|
indices.append((idx, data_source.get_frame_len(idx))) |
|
indices.sort(key=lambda elem : elem[1]) |
|
|
|
batch = [] |
|
batch_frames = 0 |
|
for idx, frame_len in tqdm(indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"): |
|
if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples): |
|
batch.append(idx) |
|
batch_frames += frame_len |
|
else: |
|
if len(batch) > 0: |
|
batches.append(batch) |
|
if frame_len <= self.frames_threshold: |
|
batch = [idx] |
|
batch_frames = frame_len |
|
else: |
|
batch = [] |
|
batch_frames = 0 |
|
|
|
if not drop_last and len(batch) > 0: |
|
batches.append(batch) |
|
|
|
del indices |
|
|
|
|
|
|
|
|
|
random.seed(random_seed) |
|
random.shuffle(batches) |
|
|
|
self.batches = batches |
|
|
|
def __iter__(self): |
|
return iter(self.batches) |
|
|
|
def __len__(self): |
|
return len(self.batches) |
|
|
|
|
|
|
|
|
|
def load_dataset( |
|
dataset_name: str, |
|
tokenizer: str, |
|
dataset_type: str = "CustomDataset", |
|
audio_type: str = "raw", |
|
mel_spec_kwargs: dict = dict() |
|
) -> CustomDataset: |
|
|
|
print("Loading dataset ...") |
|
|
|
if dataset_type == "CustomDataset": |
|
if audio_type == "raw": |
|
try: |
|
train_dataset = load_from_disk(f"data/{dataset_name}_{tokenizer}/raw") |
|
except: |
|
train_dataset = Dataset_.from_file(f"data/{dataset_name}_{tokenizer}/raw.arrow") |
|
preprocessed_mel = False |
|
elif audio_type == "mel": |
|
train_dataset = Dataset_.from_file(f"data/{dataset_name}_{tokenizer}/mel.arrow") |
|
preprocessed_mel = True |
|
with open(f"data/{dataset_name}_{tokenizer}/duration.json", 'r', encoding='utf-8') as f: |
|
data_dict = json.load(f) |
|
durations = data_dict["duration"] |
|
train_dataset = CustomDataset(train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs) |
|
|
|
elif dataset_type == "HFDataset": |
|
print("Should manually modify the path of huggingface dataset to your need.\n" + |
|
"May also the corresponding script cuz different dataset may have different format.") |
|
pre, post = dataset_name.split("_") |
|
train_dataset = HFDataset(load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir="./data"),) |
|
|
|
return train_dataset |
|
|
|
|
|
|
|
|
|
def collate_fn(batch): |
|
mel_specs = [item['mel_spec'].squeeze(0) for item in batch] |
|
mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs]) |
|
max_mel_length = mel_lengths.amax() |
|
|
|
padded_mel_specs = [] |
|
for spec in mel_specs: |
|
padding = (0, max_mel_length - spec.size(-1)) |
|
padded_spec = F.pad(spec, padding, value = 0) |
|
padded_mel_specs.append(padded_spec) |
|
|
|
mel_specs = torch.stack(padded_mel_specs) |
|
|
|
text = [item['text'] for item in batch] |
|
text_lengths = torch.LongTensor([len(item) for item in text]) |
|
|
|
return dict( |
|
mel = mel_specs, |
|
mel_lengths = mel_lengths, |
|
text = text, |
|
text_lengths = text_lengths, |
|
) |
|
|