|
""" |
|
ein notation: |
|
b - batch |
|
n - sequence |
|
nt - text sequence |
|
nw - raw wave length |
|
d - dimension |
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from einops import repeat |
|
|
|
from x_transformers.x_transformers import RotaryEmbedding |
|
|
|
from model.modules import ( |
|
TimestepEmbedding, |
|
ConvNeXtV2Block, |
|
ConvPositionEmbedding, |
|
DiTBlock, |
|
AdaLayerNormZero_Final, |
|
precompute_freqs_cis, get_pos_embed_indices, |
|
) |
|
|
|
|
|
|
|
|
|
class TextEmbedding(nn.Module): |
|
def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2): |
|
super().__init__() |
|
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) |
|
|
|
if conv_layers > 0: |
|
self.extra_modeling = True |
|
self.precompute_max_pos = 4096 |
|
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) |
|
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]) |
|
else: |
|
self.extra_modeling = False |
|
|
|
def forward(self, text: int['b nt'], seq_len, drop_text = False): |
|
batch, text_len = text.shape[0], text.shape[1] |
|
text = text + 1 |
|
text = text[:, :seq_len] |
|
text = F.pad(text, (0, seq_len - text_len), value = 0) |
|
|
|
if drop_text: |
|
text = torch.zeros_like(text) |
|
|
|
text = self.text_embed(text) |
|
|
|
|
|
if self.extra_modeling: |
|
|
|
batch_start = torch.zeros((batch,), dtype=torch.long) |
|
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) |
|
text_pos_embed = self.freqs_cis[pos_idx] |
|
text = text + text_pos_embed |
|
|
|
|
|
text = self.text_blocks(text) |
|
|
|
return text |
|
|
|
|
|
|
|
|
|
class InputEmbedding(nn.Module): |
|
def __init__(self, mel_dim, text_dim, out_dim): |
|
super().__init__() |
|
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) |
|
self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim) |
|
|
|
def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False): |
|
if drop_audio_cond: |
|
cond = torch.zeros_like(cond) |
|
|
|
x = self.proj(torch.cat((x, cond, text_embed), dim = -1)) |
|
x = self.conv_pos_embed(x) + x |
|
return x |
|
|
|
|
|
|
|
|
|
class DiT(nn.Module): |
|
def __init__(self, *, |
|
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4, |
|
mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0, |
|
long_skip_connection = False, |
|
): |
|
super().__init__() |
|
|
|
self.time_embed = TimestepEmbedding(dim) |
|
if text_dim is None: |
|
text_dim = mel_dim |
|
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers) |
|
self.input_embed = InputEmbedding(mel_dim, text_dim, dim) |
|
|
|
self.rotary_embed = RotaryEmbedding(dim_head) |
|
|
|
self.dim = dim |
|
self.depth = depth |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
DiTBlock( |
|
dim = dim, |
|
heads = heads, |
|
dim_head = dim_head, |
|
ff_mult = ff_mult, |
|
dropout = dropout |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
self.long_skip_connection = nn.Linear(dim * 2, dim, bias = False) if long_skip_connection else None |
|
|
|
self.norm_out = AdaLayerNormZero_Final(dim) |
|
self.proj_out = nn.Linear(dim, mel_dim) |
|
|
|
def forward( |
|
self, |
|
x: float['b n d'], |
|
cond: float['b n d'], |
|
text: int['b nt'], |
|
time: float['b'] | float[''], |
|
drop_audio_cond, |
|
drop_text, |
|
mask: bool['b n'] | None = None, |
|
): |
|
batch, seq_len = x.shape[0], x.shape[1] |
|
if time.ndim == 0: |
|
time = repeat(time, ' -> b', b = batch) |
|
|
|
|
|
t = self.time_embed(time) |
|
text_embed = self.text_embed(text, seq_len, drop_text = drop_text) |
|
x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond) |
|
|
|
rope = self.rotary_embed.forward_from_seq_len(seq_len) |
|
|
|
if self.long_skip_connection is not None: |
|
residual = x |
|
|
|
for block in self.transformer_blocks: |
|
x = block(x, t, mask = mask, rope = rope) |
|
|
|
if self.long_skip_connection is not None: |
|
x = self.long_skip_connection(torch.cat((x, residual), dim = -1)) |
|
|
|
x = self.norm_out(x, t) |
|
output = self.proj_out(x) |
|
|
|
return output |
|
|