|
|
|
|
|
|
|
import re |
|
import tempfile |
|
|
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
import tqdm |
|
from pydub import AudioSegment, silence |
|
from transformers import pipeline |
|
from vocos import Vocos |
|
|
|
from model import CFM |
|
from model.utils import ( |
|
load_checkpoint, |
|
get_tokenizer, |
|
convert_char_to_pinyin, |
|
) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") |
|
|
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
target_rms = 0.1 |
|
cross_fade_duration = 0.15 |
|
ode_method = "euler" |
|
nfe_step = 32 |
|
cfg_strength = 2.0 |
|
sway_sampling_coef = -1.0 |
|
speed = 1.0 |
|
fix_duration = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def chunk_text(text, max_chars=135): |
|
""" |
|
Splits the input text into chunks, each with a maximum number of characters. |
|
|
|
Args: |
|
text (str): The text to be split. |
|
max_chars (int): The maximum number of characters per chunk. |
|
|
|
Returns: |
|
List[str]: A list of text chunks. |
|
""" |
|
chunks = [] |
|
current_chunk = "" |
|
|
|
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) |
|
|
|
for sentence in sentences: |
|
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: |
|
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence |
|
else: |
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence |
|
|
|
if current_chunk: |
|
chunks.append(current_chunk.strip()) |
|
|
|
return chunks |
|
|
|
|
|
|
|
def load_vocoder(is_local=False, local_path="", device=device): |
|
if is_local: |
|
print(f"Load vocos from local path {local_path}") |
|
vocos = Vocos.from_hparams(f"{local_path}/config.yaml") |
|
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device) |
|
vocos.load_state_dict(state_dict) |
|
vocos.eval() |
|
else: |
|
print("Download Vocos from huggingface charactr/vocos-mel-24khz") |
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") |
|
return vocos |
|
|
|
|
|
|
|
|
|
asr_pipe = None |
|
|
|
|
|
def initialize_asr_pipeline(device=device): |
|
global asr_pipe |
|
asr_pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model="openai/whisper-large-v3-turbo", |
|
torch_dtype=torch.float16, |
|
device=device, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device): |
|
if vocab_file == "": |
|
vocab_file = "Emilia_ZH_EN" |
|
tokenizer = "pinyin" |
|
else: |
|
tokenizer = "custom" |
|
|
|
print("\nvocab : ", vocab_file) |
|
print("tokenizer : ", tokenizer) |
|
print("model : ", ckpt_path, "\n") |
|
|
|
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) |
|
model = CFM( |
|
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), |
|
mel_spec_kwargs=dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
), |
|
odeint_kwargs=dict( |
|
method=ode_method, |
|
), |
|
vocab_char_map=vocab_char_map, |
|
).to(device) |
|
|
|
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema) |
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=device): |
|
show_info("Converting audio...") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
aseg = AudioSegment.from_file(ref_audio_orig) |
|
|
|
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
|
|
audio_duration = len(aseg) |
|
if audio_duration > 15000: |
|
show_info("Audio is over 15s, clipping to only first 15s.") |
|
aseg = aseg[:15000] |
|
aseg.export(f.name, format="wav") |
|
ref_audio = f.name |
|
|
|
if not ref_text.strip(): |
|
global asr_pipe |
|
if asr_pipe is None: |
|
initialize_asr_pipeline(device=device) |
|
show_info("No reference text provided, transcribing reference audio...") |
|
ref_text = asr_pipe( |
|
ref_audio, |
|
chunk_length_s=30, |
|
batch_size=128, |
|
generate_kwargs={"task": "transcribe"}, |
|
return_timestamps=False, |
|
)["text"].strip() |
|
show_info("Finished transcription") |
|
else: |
|
show_info("Using custom reference text...") |
|
|
|
|
|
if not ref_text.endswith(". ") and not ref_text.endswith("。"): |
|
if ref_text.endswith("."): |
|
ref_text += " " |
|
else: |
|
ref_text += ". " |
|
|
|
return ref_audio, ref_text |
|
|
|
|
|
|
|
|
|
|
|
def infer_process( |
|
ref_audio, |
|
ref_text, |
|
gen_text, |
|
model_obj, |
|
show_info=print, |
|
progress=tqdm, |
|
target_rms=target_rms, |
|
cross_fade_duration=cross_fade_duration, |
|
nfe_step=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
speed=speed, |
|
fix_duration=fix_duration, |
|
device=device, |
|
): |
|
|
|
audio, sr = torchaudio.load(ref_audio) |
|
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) |
|
gen_text_batches = chunk_text(gen_text, max_chars=max_chars) |
|
for i, gen_text in enumerate(gen_text_batches): |
|
print(f"gen_text {i}", gen_text) |
|
|
|
show_info(f"Generating audio in {len(gen_text_batches)} batches...") |
|
return infer_batch_process( |
|
(audio, sr), |
|
ref_text, |
|
gen_text_batches, |
|
model_obj, |
|
progress=progress, |
|
target_rms=target_rms, |
|
cross_fade_duration=cross_fade_duration, |
|
nfe_step=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
speed=speed, |
|
fix_duration=fix_duration, |
|
device=device, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def infer_batch_process( |
|
ref_audio, |
|
ref_text, |
|
gen_text_batches, |
|
model_obj, |
|
progress=tqdm, |
|
target_rms=0.1, |
|
cross_fade_duration=0.15, |
|
nfe_step=32, |
|
cfg_strength=2.0, |
|
sway_sampling_coef=-1, |
|
speed=1, |
|
fix_duration=None, |
|
device=None, |
|
): |
|
audio, sr = ref_audio |
|
if audio.shape[0] > 1: |
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
|
|
rms = torch.sqrt(torch.mean(torch.square(audio))) |
|
if rms < target_rms: |
|
audio = audio * target_rms / rms |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) |
|
audio = resampler(audio) |
|
audio = audio.to(device) |
|
|
|
generated_waves = [] |
|
spectrograms = [] |
|
|
|
if len(ref_text[-1].encode("utf-8")) == 1: |
|
ref_text = ref_text + " " |
|
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): |
|
|
|
text_list = [ref_text + gen_text] |
|
final_text_list = convert_char_to_pinyin(text_list) |
|
|
|
ref_audio_len = audio.shape[-1] // hop_length |
|
if fix_duration is not None: |
|
duration = int(fix_duration * target_sample_rate / hop_length) |
|
else: |
|
|
|
ref_text_len = len(ref_text.encode("utf-8")) |
|
gen_text_len = len(gen_text.encode("utf-8")) |
|
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) |
|
|
|
|
|
with torch.inference_mode(): |
|
generated, _ = model_obj.sample( |
|
cond=audio, |
|
text=final_text_list, |
|
duration=duration, |
|
steps=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
) |
|
|
|
generated = generated.to(torch.float32) |
|
generated = generated[:, ref_audio_len:, :] |
|
generated_mel_spec = generated.permute(0, 2, 1) |
|
generated_wave = vocos.decode(generated_mel_spec.cpu()) |
|
if rms < target_rms: |
|
generated_wave = generated_wave * rms / target_rms |
|
|
|
|
|
generated_wave = generated_wave.squeeze().cpu().numpy() |
|
|
|
generated_waves.append(generated_wave) |
|
spectrograms.append(generated_mel_spec[0].cpu().numpy()) |
|
|
|
|
|
if cross_fade_duration <= 0: |
|
|
|
final_wave = np.concatenate(generated_waves) |
|
else: |
|
final_wave = generated_waves[0] |
|
for i in range(1, len(generated_waves)): |
|
prev_wave = final_wave |
|
next_wave = generated_waves[i] |
|
|
|
|
|
cross_fade_samples = int(cross_fade_duration * target_sample_rate) |
|
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) |
|
|
|
if cross_fade_samples <= 0: |
|
|
|
final_wave = np.concatenate([prev_wave, next_wave]) |
|
continue |
|
|
|
|
|
prev_overlap = prev_wave[-cross_fade_samples:] |
|
next_overlap = next_wave[:cross_fade_samples] |
|
|
|
|
|
fade_out = np.linspace(1, 0, cross_fade_samples) |
|
fade_in = np.linspace(0, 1, cross_fade_samples) |
|
|
|
|
|
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in |
|
|
|
|
|
new_wave = np.concatenate( |
|
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] |
|
) |
|
|
|
final_wave = new_wave |
|
|
|
|
|
combined_spectrogram = np.concatenate(spectrograms, axis=1) |
|
|
|
return final_wave, target_sample_rate, combined_spectrogram |
|
|
|
|
|
|
|
|
|
|
|
def remove_silence_for_generated_wav(filename): |
|
aseg = AudioSegment.from_file(filename) |
|
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) |
|
non_silent_wave = AudioSegment.silent(duration=0) |
|
for non_silent_seg in non_silent_segs: |
|
non_silent_wave += non_silent_seg |
|
aseg = non_silent_wave |
|
aseg.export(filename, format="wav") |
|
|