Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
import streamlit as st | |
# Model name | |
model_name = "YasirAbdali/bart-summarization" # Replace with the path to your fine-tuned model or Hugging Face model ID | |
# Load summarization pipeline | |
try: | |
summarizer = pipeline("summarization", model=model_name) | |
st.write("Summarization pipeline loaded successfully.") | |
except Exception as e: | |
st.error(f"Error loading summarization pipeline: {e}") | |
st.stop() | |
# Streamlit app | |
st.title("Summary Generator") | |
# User input | |
topic = st.text_area("Enter text:") | |
max_length = st.slider("Maximum length of generated text:", min_value=100, max_value=500, value=200, step=50) | |
if topic: | |
# Generate summary | |
try: | |
summary = summarizer(topic, max_length=max_length, min_length=50, do_sample=False) | |
generated_summary = summary[0]['summary_text'] | |
st.write("Summary generated successfully.") | |
except Exception as e: | |
st.error(f"Error generating summary: {e}") | |
st.stop() | |
# Display generated summary | |
try: | |
st.subheader("Generated Summary:") | |
st.markdown(generated_summary) | |
except Exception as e: | |
st.error(f"Error displaying generated summary: {e}") | |
# Option to download the summary | |
st.download_button( | |
label="Download Summary", | |
data=generated_summary, | |
file_name="generated_summary.txt", | |
mime="text/plain" | |
) | |