Spaces:
Runtime error
Runtime error
File size: 17,019 Bytes
371c2f5 d6220ca 371c2f5 d6220ca 371c2f5 d6220ca 371c2f5 da866b5 371c2f5 a9bd2fc 371c2f5 a9bd2fc 371c2f5 a9bd2fc 371c2f5 a9bd2fc 371c2f5 a9bd2fc 371c2f5 a9bd2fc da0667c 371c2f5 a9bd2fc 371c2f5 a9bd2fc 371c2f5 da0667c a9bd2fc da0667c a9bd2fc da866b5 a9bd2fc 371c2f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Copyright 2022-2023 XProbe Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import os
import urllib.request
import uuid
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
import gradio as gr
from xinference.locale.utils import Locale
from xinference.model import MODEL_FAMILIES, ModelSpec
from xinference.core.api import SyncSupervisorAPI
if TYPE_CHECKING:
from xinference.types import ChatCompletionChunk, ChatCompletionMessage
MODEL_TO_FAMILIES = dict(
(model_family.model_name, model_family)
for model_family in MODEL_FAMILIES
if model_family.model_name != "baichuan"
)
class GradioApp:
def __init__(
self,
supervisor_address: str,
gladiator_num: int = 2,
max_model_num: int = 2,
use_launched_model: bool = False,
):
self._api = SyncSupervisorAPI(supervisor_address)
self._gladiator_num = gladiator_num
self._max_model_num = max_model_num
self._use_launched_model = use_launched_model
self._locale = Locale()
def _create_model(
self,
model_name: str,
model_size_in_billions: Optional[int] = None,
model_format: Optional[str] = None,
quantization: Optional[str] = None,
):
model_uid = str(uuid.uuid1())
models = self._api.list_models()
if len(models) >= self._max_model_num:
self._api.terminate_model(models[0][0])
return self._api.launch_model(
model_uid, model_name, model_size_in_billions, model_format, quantization
)
async def generate(
self,
model: str,
message: str,
chat: List[List[str]],
max_token: int,
temperature: float,
top_p: float,
window_size: int,
show_finish_reason: bool,
):
if not message:
yield message, chat
else:
try:
model_ref = self._api.get_model(model)
except KeyError:
raise gr.Error(self._locale(f"Please create model first"))
history: "List[ChatCompletionMessage]" = []
for c in chat:
history.append({"role": "user", "content": c[0]})
out = c[1]
finish_reason_idx = out.find(f"[{self._locale('stop reason')}: ")
if finish_reason_idx != -1:
out = out[:finish_reason_idx]
history.append({"role": "assistant", "content": out})
if window_size != 0:
history = history[-(window_size // 2) :]
# chatglm only support even number of conversation history.
if len(history) % 2 != 0:
history = history[1:]
generate_config = dict(
max_tokens=max_token,
temperature=temperature,
top_p=top_p,
stream=True,
)
chat += [[message, ""]]
chat_generator = await model_ref.chat(
message,
chat_history=history,
generate_config=generate_config,
)
chunk: Optional["ChatCompletionChunk"] = None
async for chunk in chat_generator:
assert chunk is not None
delta = chunk["choices"][0]["delta"]
if "content" not in delta:
continue
else:
chat[-1][1] += delta["content"]
yield "", chat
if show_finish_reason and chunk is not None:
chat[-1][
1
] += f"[{self._locale('stop reason')}: {chunk['choices'][0]['finish_reason']}]"
yield "", chat
def _build_chatbot(self, model_uid: str, model_name: str):
with gr.Accordion(self._locale("Parameters"), open=False):
max_token = gr.Slider(
128,
1024,
value=128,
step=1,
label=self._locale("Max tokens"),
info=self._locale("The maximum number of tokens to generate."),
)
temperature = gr.Slider(
0.2,
1,
value=0.8,
step=0.01,
label=self._locale("Temperature"),
info=self._locale("The temperature to use for sampling."),
)
top_p = gr.Slider(
0.2,
1,
value=0.95,
step=0.01,
label=self._locale("Top P"),
info=self._locale("The top-p value to use for sampling."),
)
window_size = gr.Slider(
0,
50,
value=10,
step=1,
label=self._locale("Window size"),
info=self._locale("Window size of chat history."),
)
show_finish_reason = gr.Checkbox(
label=f"{self._locale('Show stop reason')}"
)
chat = gr.Chatbot(label=model_name)
text = gr.Textbox(visible=False)
model_uid = gr.Textbox(model_uid, visible=False)
text.change(
self.generate,
[
model_uid,
text,
chat,
max_token,
temperature,
top_p,
window_size,
show_finish_reason,
],
[text, chat],
)
return (
text,
chat,
max_token,
temperature,
top_p,
show_finish_reason,
window_size,
model_uid,
)
def _build_chat_column(self):
with gr.Column():
with gr.Row():
model_name = gr.Dropdown(
choices=list(MODEL_TO_FAMILIES.keys()),
label=self._locale("model name"),
scale=2,
)
model_format = gr.Dropdown(
choices=[],
interactive=False,
label=self._locale("model format"),
scale=2,
)
model_size_in_billions = gr.Dropdown(
choices=[],
interactive=False,
label=self._locale("model size in billions"),
scale=1,
)
quantization = gr.Dropdown(
choices=[],
interactive=False,
label=self._locale("quantization"),
scale=1,
)
create_model = gr.Button(value=self._locale("create"))
def select_model_name(model_name: str):
if model_name:
model_family = MODEL_TO_FAMILIES[model_name]
formats = [model_family.model_format]
model_sizes_in_billions = [
str(b) for b in model_family.model_sizes_in_billions
]
quantizations = model_family.quantizations
return (
gr.Dropdown.update(
choices=formats,
interactive=True,
value=model_family.model_format,
),
gr.Dropdown.update(
choices=model_sizes_in_billions[:1],
interactive=True,
value=model_sizes_in_billions[0],
),
gr.Dropdown.update(
choices=quantizations,
interactive=True,
value=quantizations[0],
),
)
else:
return (
gr.Dropdown.update(),
gr.Dropdown.update(),
gr.Dropdown.update(),
)
model_name.change(
select_model_name,
inputs=[model_name],
outputs=[model_format, model_size_in_billions, quantization],
)
components = self._build_chatbot("", "")
model_text = components[0]
chat, model_uid = components[1], components[-1]
def select_model(
_model_name: str,
_model_format: str,
_model_size_in_billions: str,
_quantization: str,
progress=gr.Progress(),
):
model_family = MODEL_TO_FAMILIES[_model_name]
cache_path, meta_path = model_family.generate_cache_path(
int(_model_size_in_billions), _quantization
)
if not (os.path.exists(cache_path) and os.path.exists(meta_path)):
if os.path.exists(cache_path):
os.remove(cache_path)
url = model_family.url_generator(
int(_model_size_in_billions), _quantization
)
full_name = (
f"{str(model_family)}-{_model_size_in_billions}b-{_quantization}"
)
try:
urllib.request.urlretrieve(
url,
cache_path,
reporthook=lambda block_num, block_size, total_size: progress(
block_num * block_size / total_size,
desc=self._locale("Downloading"),
),
)
# write a meta file to record if download finished
with open(meta_path, "w") as f:
f.write(full_name)
except:
if os.path.exists(cache_path):
os.remove(cache_path)
model_uid = self._create_model(
_model_name, int(_model_size_in_billions), _model_format, _quantization
)
return gr.Chatbot.update(
label="-".join(
[_model_name, _model_size_in_billions, _model_format, _quantization]
),
value=[],
), gr.Textbox.update(value=model_uid)
def clear_chat(
_model_name: str,
_model_format: str,
_model_size_in_billions: str,
_quantization: str,
):
full_name = "-".join(
[_model_name, _model_size_in_billions, _model_format, _quantization]
)
return str(uuid.uuid4()), gr.Chatbot.update(
label=full_name,
value=[],
)
invisible_text = gr.Textbox(visible=False)
create_model.click(
clear_chat,
inputs=[model_name, model_format, model_size_in_billions, quantization],
outputs=[invisible_text, chat],
)
invisible_text.change(
select_model,
inputs=[model_name, model_format, model_size_in_billions, quantization],
outputs=[chat, model_uid],
postprocess=False,
)
return chat, model_text
def _build_arena(self):
with gr.Box():
with gr.Row():
chat_and_text = [
self._build_chat_column() for _ in range(self._gladiator_num)
]
chats = [c[0] for c in chat_and_text]
texts = [c[1] for c in chat_and_text]
msg = gr.Textbox(label=self._locale("Input"))
def update_message(text_in: str):
return "", text_in, text_in
msg.submit(update_message, inputs=[msg], outputs=[msg] + texts)
gr.ClearButton(components=[msg] + chats + texts)
def _build_single(self):
chat, model_text = self._build_chat_column()
msg = gr.Textbox(label=self._locale("Input"))
def update_message(text_in: str):
return "", text_in
msg.submit(update_message, inputs=[msg], outputs=[msg, model_text])
gr.ClearButton(components=[chat, msg, model_text])
def _build_single_with_launched(
self, models: List[Tuple[str, ModelSpec]], default_index: int
):
uid_to_model_spec: Dict[str, ModelSpec] = dict((m[0], m[1]) for m in models)
choices = [
"-".join(
[
s.model_name,
str(s.model_size_in_billions),
s.model_format,
s.quantization,
]
)
for s in uid_to_model_spec.values()
]
choice_to_uid = dict(zip(choices, uid_to_model_spec.keys()))
model_selection = gr.Dropdown(
label=self._locale("select model"),
choices=choices,
value=choices[default_index],
)
components = self._build_chatbot(
models[default_index][0], choices[default_index]
)
model_text = components[0]
model_uid = components[-1]
chat = components[1]
def select_model(model_name):
uid = choice_to_uid[model_name]
return gr.Chatbot.update(label=model_name), uid
model_selection.change(
select_model, inputs=[model_selection], outputs=[chat, model_uid]
)
return chat, model_text
def _build_arena_with_launched(self, models: List[Tuple[str, ModelSpec]]):
chat_and_text = []
with gr.Row():
for i in range(self._gladiator_num):
with gr.Column():
chat_and_text.append(self._build_single_with_launched(models, i))
chats = [c[0] for c in chat_and_text]
texts = [c[1] for c in chat_and_text]
msg = gr.Textbox(label=self._locale("Input"))
def update_message(text_in: str):
return "", text_in, text_in
msg.submit(update_message, inputs=[msg], outputs=[msg] + texts)
gr.ClearButton(components=[msg] + chats + texts)
def build(self):
if self._use_launched_model:
models = self._api.list_models()
with gr.Blocks() as blocks:
if len(models) >= 2:
with gr.Tab(self._locale("Arena")):
self._build_arena_with_launched(models)
with gr.Tab(self._locale("Chat")):
chat, model_text = self._build_single_with_launched(models, 0)
msg = gr.Textbox(label=self._locale("Input"))
def update_message(text_in: str):
return "", text_in
msg.submit(update_message, inputs=[msg], outputs=[msg, model_text])
gr.ClearButton(components=[chat, msg, model_text])
else:
with gr.Blocks() as blocks:
with gr.Tab(self._locale("Chat")):
self._build_single()
with gr.Tab(self._locale("Arena")):
self._build_arena()
blocks.queue(concurrency_count=40)
return blocks
async def launch_xinference():
import xoscar as xo
from xinference.core.service import SupervisorActor
from xinference.core.api import AsyncSupervisorAPI
from xinference.deploy.worker import start_worker_components
pool = await xo.create_actor_pool(address="0.0.0.0", n_process=0)
supervisor_address = pool.external_address
await xo.create_actor(
SupervisorActor, address=supervisor_address, uid=SupervisorActor.uid()
)
await start_worker_components(
address=supervisor_address, supervisor_address=supervisor_address
)
api = AsyncSupervisorAPI(supervisor_address)
supported_models = ["chatglm2", "chatglm", "vicuna-v1.3", "orca"]
for model in supported_models:
await api.launch_model(str(uuid.uuid4()), model)
gradio_block = GradioApp(supervisor_address, use_launched_model=True).build()
gradio_block.launch()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
task = loop.create_task(launch_xinference())
try:
loop.run_until_complete(task)
except KeyboardInterrupt:
task.cancel()
loop.run_until_complete(task)
# avoid displaying exception-unhandled warnings
task.exception()
|