Spaces:
Runtime error
Runtime error
Audio postprocessing
Browse files- app.py +21 -5
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,6 +2,8 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import ViTImageProcessor, ViTModel
|
4 |
from audiodiffusion import AudioDiffusionPipeline, ImageEncoder
|
|
|
|
|
5 |
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
generator1 = torch.Generator(device)
|
@@ -13,6 +15,16 @@ processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k
|
|
13 |
extractor = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
14 |
image_encoder = ImageEncoder(processor, extractor)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def _encode_image(image):
|
17 |
return torch.unsqueeze(image_encoder.encode(image), axis=1).to(device)
|
18 |
|
@@ -28,9 +40,13 @@ def _generate_spectrogram(condition, steps, eta):
|
|
28 |
)
|
29 |
return images[0], (sample_rate, audios[0])
|
30 |
|
|
|
|
|
|
|
31 |
def run_generation(image, steps, eta):
|
32 |
condition = _encode_image(image)
|
33 |
spectrogram, (sr, audio) = _generate_spectrogram(condition, steps, eta)
|
|
|
34 |
return spectrogram, (sr, audio)
|
35 |
|
36 |
with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
@@ -44,21 +60,21 @@ with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
|
44 |
label="Conditioning image"
|
45 |
)
|
46 |
steps = gr.Slider(
|
47 |
-
minimum=
|
48 |
maximum=1000,
|
49 |
-
step=
|
50 |
value=50,
|
51 |
label="Denoising steps"
|
52 |
)
|
53 |
eta = gr.Slider(
|
54 |
-
minimum=0.
|
55 |
maximum=1.0,
|
56 |
step=0.1,
|
57 |
-
value=0.
|
58 |
label="η"
|
59 |
)
|
60 |
gr.Markdown('''
|
61 |
-
Eta (η) is a variable that controls the level of interpolation between
|
62 |
''')
|
63 |
btn = gr.Button("Generate")
|
64 |
clear = gr.ClearButton(image)
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import ViTImageProcessor, ViTModel
|
4 |
from audiodiffusion import AudioDiffusionPipeline, ImageEncoder
|
5 |
+
from pedalboard.io import AudioFile
|
6 |
+
from pedalboard import Pedalboard, NoiseGate, Compressor, LowShelfFilter, Gain, HighShelfFilter, Reverb
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
generator1 = torch.Generator(device)
|
|
|
15 |
extractor = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
16 |
image_encoder = ImageEncoder(processor, extractor)
|
17 |
|
18 |
+
board = Pedalboard([
|
19 |
+
NoiseGate(threshold_db=-60, ratio=10.0),
|
20 |
+
Compressor(threshold_db=60, ratio=1.0),
|
21 |
+
LowShelfFilter(cutoff_frequency_hz=220, gain_db=-10),
|
22 |
+
HighShelfFilter(cutoff_frequency_hz=1200, gain_db=-10),
|
23 |
+
Gain(gain_db=40),
|
24 |
+
Reverb(room_size=0.5),
|
25 |
+
|
26 |
+
])
|
27 |
+
|
28 |
def _encode_image(image):
|
29 |
return torch.unsqueeze(image_encoder.encode(image), axis=1).to(device)
|
30 |
|
|
|
40 |
)
|
41 |
return images[0], (sample_rate, audios[0])
|
42 |
|
43 |
+
def _denoise_audio(audio, sr):
|
44 |
+
return board(audio, sr)
|
45 |
+
|
46 |
def run_generation(image, steps, eta):
|
47 |
condition = _encode_image(image)
|
48 |
spectrogram, (sr, audio) = _generate_spectrogram(condition, steps, eta)
|
49 |
+
audio = _denoise_audio(audio, sr)
|
50 |
return spectrogram, (sr, audio)
|
51 |
|
52 |
with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
|
|
60 |
label="Conditioning image"
|
61 |
)
|
62 |
steps = gr.Slider(
|
63 |
+
minimum=10,
|
64 |
maximum=1000,
|
65 |
+
step=10,
|
66 |
value=50,
|
67 |
label="Denoising steps"
|
68 |
)
|
69 |
eta = gr.Slider(
|
70 |
+
minimum=0.0,
|
71 |
maximum=1.0,
|
72 |
step=0.1,
|
73 |
+
value=0.6,
|
74 |
label="η"
|
75 |
)
|
76 |
gr.Markdown('''
|
77 |
+
Eta (η) is a variable that controls the level of interpolation between deterministic (η=0.0) and stochastic (η=1.0) denoising schedule.
|
78 |
''')
|
79 |
btn = gr.Button("Generate")
|
80 |
clear = gr.ClearButton(image)
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ transformers==4.35.2
|
|
4 |
numpy==1.23.5
|
5 |
Pillow==9.3.0
|
6 |
diffusers==0.23.1
|
7 |
-
librosa==0.10.1
|
|
|
|
4 |
numpy==1.23.5
|
5 |
Pillow==9.3.0
|
6 |
diffusers==0.23.1
|
7 |
+
librosa==0.10.1
|
8 |
+
pedalboard==0.8.6
|