WinterGYC
Update
f915361
raw
history blame
4.62 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
import gradio as gr
import mdtex2html
import torch
model = AutoModelForCausalLM.from_pretrained(
"baichuan-inc/Baichuan-13B-Chat",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(
"baichuan-inc/Baichuan-13B-Chat"
)
tokenizer = AutoTokenizer.from_pretrained(
"baichuan-inc/Baichuan-13B-Chat",
use_fast=False,
trust_remote_code=True
)
model = model.quantize(8).cuda()
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>"+line
text = "".join(lines)
return text
stream = True
def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values):
model.generation_config.temperature = temperature
model.generation_config.top_p = top_p
model.generation_config.max_new_tokens = max_length
chatbot.append((parse_text(input), ""))
history.append({"role": "user", "content": parse_text(input)})
if stream:
position = 0
for response in model.chat(tokenizer, history, stream=True):
chatbot[-1] = (parse_text(input), parse_text(response))
if torch.backends.mps.is_available():
torch.mps.empty_cache()
yield chatbot, history, past_key_values
print(response)
history.append({"role": "assistant", "content": response})
else:
response = model.chat(tokenizer, history)
print(response)
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history, past_key_values
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], [], None
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">BaiChuan-13B-Int8</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.85, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.9, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
past_key_values = gr.State(None)
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)