import json import tempfile import zipfile from datetime import datetime from pathlib import Path from uuid import uuid4 import gradio as gr import numpy as np from PIL import Image from huggingface_hub import CommitScheduler, InferenceClient IMAGE_DATASET_DIR = Path("image_dataset_1M") / f"train-{uuid4()}" IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True) IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl" class ZipScheduler(CommitScheduler): """ Example of a custom CommitScheduler with overwritten `push_to_hub` to zip images before pushing them to the Hub. Workflow: 1. Read metadata + list PNG files. 2. Zip png files in a single archive. 3. Create commit (metadata + archive). 4. Delete local png files to avoid re-uploading them later. Only step 1 requires to activate the lock. Once the metadata is read, the lock is released and the rest of the process can be done without blocking the Gradio app. """ def push_to_hub(self): # 1. Read metadata + list PNG files with self.lock: png_files = list(self.folder_path.glob("*.png")) if len(png_files) == 0: return None # return early if nothing to commit # Read and delete metadata file metadata = IMAGE_JSONL_PATH.read_text() try: IMAGE_JSONL_PATH.unlink() except Exception: pass with tempfile.TemporaryDirectory() as tmpdir: # 2. Zip png files + metadata in a single archive archive_path = Path(tmpdir) / "train.zip" with zipfile.ZipFile(archive_path, "w", zipfile.ZIP_DEFLATED) as zip: # PNG files for png_file in png_files: zip.write(filename=png_file, arcname=png_file.name) # Metadata tmp_metadata = Path(tmpdir) / "metadata.jsonl" tmp_metadata.write_text(metadata) zip.write(filename=tmp_metadata, arcname="metadata.jsonl") # 3. Create commit self.api.upload_file( repo_id=self.repo_id, repo_type=self.repo_type, revision=self.revision, path_in_repo=f"train-{uuid4()}.zip", path_or_fileobj=archive_path, ) # 4. Delete local png files to avoid re-uploading them later for png_file in png_files: try: png_file.unlink() except Exception: pass scheduler = ZipScheduler( repo_id="example-space-to-dataset-image-zip", repo_type="dataset", folder_path=IMAGE_DATASET_DIR, ) client = InferenceClient() def generate_image(prompt: str) -> Image: return client.text_to_image(prompt) def save_image(prompt: str, image_array: np.ndarray) -> None: print("Saving: " + prompt) image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png" with scheduler.lock: Image.fromarray(image_array).save(image_path) with IMAGE_JSONL_PATH.open("a") as f: json.dump({"prompt": prompt, "file_name": image_path.name, "datetime": datetime.now().isoformat()}, f) f.write("\n") def get_demo(): with gr.Row(): prompt_value = gr.Textbox(label="Prompt") image_value = gr.Image(label="Generated image") text_to_image_btn = gr.Button("Generate") text_to_image_btn.click(fn=generate_image, inputs=prompt_value, outputs=image_value).success( fn=save_image, inputs=[prompt_value, image_value], outputs=None, )