from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor import torch # Load pre-trained text and vision models text_model = AutoModel.from_pretrained("bert-base-uncased") vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224") # Define a simple multimodal model class SimpleMLLM(torch.nn.Module): def __init__(self, text_model, vision_model): super().__init__() self.text_model = text_model self.vision_model = vision_model self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512) def forward(self, input_ids, attention_mask, pixel_values): text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask) vision_outputs = self.vision_model(pixel_values=pixel_values) # Simple fusion of text and vision features fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1) output = self.fusion(fused) return output # Initialize the model model = SimpleMLLM(text_model, vision_model)from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor import torch # Load pre-trained text and vision models text_model = AutoModel.from_pretrained("bert-base-uncased") vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224") # Define a simple multimodal model class SimpleMLLM(torch.nn.Module): def __init__(self, text_model, vision_model): super().__init__() self.text_model = text_model self.vision_model = vision_model self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512) def forward(self, input_ids, attention_mask, pixel_values): text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask) vision_outputs = self.vision_model(pixel_values=pixel_values) # Simple fusion of text and vision features fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1) output = self.fusion(fused) return output # Initialize the model model = SimpleMLLM(text_model, vision_model) read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker # you will also find guides on how best to write your Dockerfile FROM python:3.9 RUN useradd -m -u 1000 user USER user ENV PATH="/home/user/.local/bin:$PATH" WORKDIR /app COPY --chown=user ./requirements.txt requirements.txt RUN pip install --no-cache-dir --upgrade -r requirements.txt COPY --chown=user . /app CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]