from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) trainer.train()from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor import torch # Load pre-trained text and vision models text_model = AutoModel.from_pretrained("bert-base-uncased") vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224") # Define a simple multimodal model class SimpleMLLM(torch.nn.Module): def __init__(self, text_model, vision_model): super().__init__() self.text_model = text_model self.vision_model = vision_model self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512) def forward(self, input_ids, attention_mask, pixel_values): text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask) vision_outputs = self.vision_model(pixel_values=pixel_values) # Simple fusion of text and vision features fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1) output = self.fusion(fused) return output # Initialize the model model = SimpleMLLM(text_model, vision_model) import math eval_results = trainer.evaluate() print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")# You would then need to implement data loading, training loop, etc.