Spaces:
Sleeping
Sleeping
Waseem7711
commited on
Commit
•
df61c4d
1
Parent(s):
1386537
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,3 @@
|
|
1 |
-
Hugging Face's logo
|
2 |
-
Hugging Face
|
3 |
-
Search models, datasets, users...
|
4 |
-
Models
|
5 |
-
Datasets
|
6 |
-
Spaces
|
7 |
-
Posts
|
8 |
-
Docs
|
9 |
-
Pricing
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
Spaces:
|
14 |
-
|
15 |
-
Waseem7711
|
16 |
-
/
|
17 |
-
RAG_Chat_Bot
|
18 |
-
|
19 |
-
|
20 |
-
like
|
21 |
-
0
|
22 |
-
|
23 |
-
App
|
24 |
-
Files
|
25 |
-
Community
|
26 |
-
Settings
|
27 |
-
RAG_Chat_Bot
|
28 |
-
/
|
29 |
-
app.py
|
30 |
-
|
31 |
-
Waseem7711's picture
|
32 |
-
Waseem7711
|
33 |
-
Update app.py
|
34 |
-
43c74e3
|
35 |
-
verified
|
36 |
-
12 minutes ago
|
37 |
-
raw
|
38 |
-
|
39 |
-
Copy download link
|
40 |
-
history
|
41 |
-
blame
|
42 |
-
edit
|
43 |
-
delete
|
44 |
-
No virus
|
45 |
-
|
46 |
-
2.21 kB
|
47 |
import streamlit as st
|
48 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
49 |
import torch
|
@@ -52,6 +6,7 @@ import fitz # PyMuPDF for PDF handling
|
|
52 |
# Load the model and tokenizer
|
53 |
@st.cache_resource
|
54 |
def load_model():
|
|
|
55 |
tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG")
|
56 |
model = AutoModelForCausalLM.from_pretrained(
|
57 |
"himmeow/vi-gemma-2b-RAG",
|
@@ -64,6 +19,7 @@ def load_model():
|
|
64 |
|
65 |
# Function to extract text from PDF
|
66 |
def extract_text_from_pdf(pdf_file):
|
|
|
67 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
68 |
text = ""
|
69 |
for page_num in range(doc.page_count):
|
@@ -73,45 +29,54 @@ def extract_text_from_pdf(pdf_file):
|
|
73 |
|
74 |
# Function to generate response from model
|
75 |
def generate_response(input_text, query, tokenizer, model):
|
76 |
-
prompt
|
|
|
77 |
### Instruction and Input:
|
78 |
Based on the following context/document:
|
79 |
-
{}
|
80 |
-
Please answer the question: {}
|
|
|
81 |
### Response:
|
82 |
-
{}
|
83 |
"""
|
84 |
-
|
85 |
-
input_ids = tokenizer(formatted_input, return_tensors="pt")
|
86 |
if torch.cuda.is_available():
|
87 |
input_ids = input_ids.to("cuda")
|
|
|
88 |
outputs = model.generate(
|
89 |
**input_ids,
|
90 |
max_new_tokens=500,
|
91 |
no_repeat_ngram_size=5
|
92 |
)
|
|
|
93 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
94 |
|
95 |
-
# Streamlit app
|
96 |
def main():
|
97 |
st.title("PDF Question Answering with vi-gemma-2b-RAG")
|
98 |
-
|
|
|
99 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
100 |
-
|
101 |
if pdf_file is not None:
|
102 |
with st.spinner("Reading the PDF..."):
|
|
|
103 |
pdf_text = extract_text_from_pdf(pdf_file)
|
104 |
|
105 |
st.text_area("Extracted Text", pdf_text, height=300)
|
106 |
-
|
|
|
107 |
query = st.text_input("Enter your question:")
|
108 |
-
|
109 |
if st.button("Get Answer"):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
main()
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
6 |
# Load the model and tokenizer
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
+
# Load the tokenizer and model
|
10 |
tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG")
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
"himmeow/vi-gemma-2b-RAG",
|
|
|
19 |
|
20 |
# Function to extract text from PDF
|
21 |
def extract_text_from_pdf(pdf_file):
|
22 |
+
# Extract text from the uploaded PDF file using PyMuPDF
|
23 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
24 |
text = ""
|
25 |
for page_num in range(doc.page_count):
|
|
|
29 |
|
30 |
# Function to generate response from model
|
31 |
def generate_response(input_text, query, tokenizer, model):
|
32 |
+
# Format the input prompt for the model
|
33 |
+
prompt = f"""
|
34 |
### Instruction and Input:
|
35 |
Based on the following context/document:
|
36 |
+
{input_text}
|
37 |
+
Please answer the question: {query}
|
38 |
+
|
39 |
### Response:
|
|
|
40 |
"""
|
41 |
+
input_ids = tokenizer(prompt, return_tensors="pt")
|
|
|
42 |
if torch.cuda.is_available():
|
43 |
input_ids = input_ids.to("cuda")
|
44 |
+
# Generate a response from the model
|
45 |
outputs = model.generate(
|
46 |
**input_ids,
|
47 |
max_new_tokens=500,
|
48 |
no_repeat_ngram_size=5
|
49 |
)
|
50 |
+
# Decode the generated output into readable text
|
51 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
|
53 |
+
# Streamlit app main function
|
54 |
def main():
|
55 |
st.title("PDF Question Answering with vi-gemma-2b-RAG")
|
56 |
+
|
57 |
+
# File uploader widget for PDF files
|
58 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
59 |
+
|
60 |
if pdf_file is not None:
|
61 |
with st.spinner("Reading the PDF..."):
|
62 |
+
# Extract text from the uploaded PDF
|
63 |
pdf_text = extract_text_from_pdf(pdf_file)
|
64 |
|
65 |
st.text_area("Extracted Text", pdf_text, height=300)
|
66 |
+
|
67 |
+
# Text input for the user's question
|
68 |
query = st.text_input("Enter your question:")
|
69 |
+
|
70 |
if st.button("Get Answer"):
|
71 |
+
if query.strip() == "":
|
72 |
+
st.warning("Please enter a question.")
|
73 |
+
else:
|
74 |
+
with st.spinner("Generating response..."):
|
75 |
+
# Load the model and tokenizer
|
76 |
+
tokenizer, model = load_model()
|
77 |
+
# Generate the response using the model
|
78 |
+
response = generate_response(pdf_text, query, tokenizer, model)
|
79 |
+
st.text_area("Response", response, height=200)
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
main()
|
|