Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from huggingface_hub import login
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Step 1: Log in to Hugging Face with your access token from secrets
|
10 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") # Fetch the token from environment
|
11 |
+
if huggingface_token:
|
12 |
+
login(token=huggingface_token) # Authenticate using the token
|
13 |
+
else:
|
14 |
+
st.error("Hugging Face token not found. Please set it in the Secrets section.")
|
15 |
+
|
16 |
+
# Step 2: Load the model and tokenizer
|
17 |
+
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" # Adjust if needed
|
18 |
+
try:
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 |
+
st.success("Model loaded successfully!")
|
22 |
+
except Exception as e:
|
23 |
+
st.error(f"Error loading model: {str(e)}")
|
24 |
+
|
25 |
+
# Step 3: Create a simple Streamlit app
|
26 |
+
def main():
|
27 |
+
st.title("Llama 3.2 11B Vision Model")
|
28 |
+
st.write("Upload an image and enter a prompt to generate output.")
|
29 |
+
|
30 |
+
# Upload image
|
31 |
+
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
32 |
+
prompt = st.text_area("Enter your prompt here:")
|
33 |
+
|
34 |
+
if st.button("Generate Output"):
|
35 |
+
if image_file and prompt:
|
36 |
+
# Load image
|
37 |
+
image = Image.open(image_file)
|
38 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
39 |
+
|
40 |
+
# Preprocess the image if needed (convert to tensor, etc.)
|
41 |
+
# This depends on how the model expects the image input
|
42 |
+
|
43 |
+
# Example of converting image to a format suitable for the model
|
44 |
+
# Note: Adjust this part based on your model's requirements.
|
45 |
+
# Here, we're just using a placeholder for the model input.
|
46 |
+
# You might need to resize or normalize the image based on the model's requirements.
|
47 |
+
# For example:
|
48 |
+
# image_tensor = preprocess_image(image)
|
49 |
+
|
50 |
+
try:
|
51 |
+
# Prepare the input for the model
|
52 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
53 |
+
|
54 |
+
# Perform inference
|
55 |
+
# Adjust the input format for the model accordingly
|
56 |
+
# Here we assume the model takes a prompt and an image (adjust as necessary)
|
57 |
+
with torch.no_grad():
|
58 |
+
model_output = model.generate(**inputs) # Pass image tensor if required
|
59 |
+
|
60 |
+
# Decode the output
|
61 |
+
output_text = tokenizer.decode(model_output[0], skip_special_tokens=True)
|
62 |
+
st.write("Generated Output:", output_text)
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error during prediction: {str(e)}")
|
65 |
+
else:
|
66 |
+
st.warning("Please upload an image and enter a prompt.")
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|