Spaces:
Running
on
A10G
Running
on
A10G
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py | |
import os | |
import sys | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
import torch | |
from torch import nn | |
try: | |
from .attention import Transformer3DModel | |
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D | |
except: | |
from attention import Transformer3DModel | |
from resnet import Downsample3D, ResnetBlock3D, Upsample3D | |
def get_down_block( | |
down_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
temb_channels, | |
add_downsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
downsample_padding=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
use_first_frame=False, | |
use_relative_position=False, | |
rotary_emb=False, | |
): | |
# print(down_block_type) | |
# print(use_first_frame) | |
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
if down_block_type == "DownBlock3D": | |
return DownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "CrossAttnDownBlock3D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") | |
return CrossAttnDownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type, | |
num_layers, | |
in_channels, | |
out_channels, | |
prev_output_channel, | |
temb_channels, | |
add_upsample, | |
resnet_eps, | |
resnet_act_fn, | |
attn_num_head_channels, | |
resnet_groups=None, | |
cross_attention_dim=None, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
resnet_time_scale_shift="default", | |
use_first_frame=False, | |
use_relative_position=False, | |
rotary_emb=False, | |
): | |
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
if up_block_type == "UpBlock3D": | |
return UpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "CrossAttnUpBlock3D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") | |
return CrossAttnUpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attn_num_head_channels, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlock3DCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
output_scale_factor=1.0, | |
cross_attention_dim=1280, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
upcast_attention=False, | |
use_first_frame=False, | |
use_relative_position=False, | |
rotary_emb=False, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
for _ in range(num_layers): | |
if dual_cross_attention: | |
raise NotImplementedError | |
attentions.append( | |
Transformer3DModel( | |
attn_num_head_channels, | |
in_channels // attn_num_head_channels, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
) | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, use_image_num=use_image_num).sample | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class CrossAttnDownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
add_downsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
use_first_frame=False, | |
use_relative_position=False, | |
rotary_emb=False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
# print(use_first_frame) | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if dual_cross_attention: | |
raise NotImplementedError | |
attentions.append( | |
Transformer3DModel( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample3D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
output_states = () | |
for resnet, attn in zip(self.resnets, self.attentions): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
def create_custom_forward_attn(module, return_dict=None, use_image_num=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict, use_image_num=use_image_num) | |
else: | |
return module(*inputs, use_image_num=use_image_num) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward_attn(attn, return_dict=False, use_image_num=use_image_num), | |
hidden_states, | |
encoder_hidden_states, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, use_image_num=use_image_num).sample | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class DownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_downsample=True, | |
downsample_padding=1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample3D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states, temb=None): | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attn_num_head_channels=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
use_first_frame=False, | |
use_relative_position=False, | |
rotary_emb=False | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.attn_num_head_channels = attn_num_head_channels | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if dual_cross_attention: | |
raise NotImplementedError | |
attentions.append( | |
Transformer3DModel( | |
attn_num_head_channels, | |
out_channels // attn_num_head_channels, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
res_hidden_states_tuple, | |
temb=None, | |
encoder_hidden_states=None, | |
upsample_size=None, | |
attention_mask=None, | |
use_image_num=None, | |
): | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
def create_custom_forward_attn(module, return_dict=None, use_image_num=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict, use_image_num=use_image_num) | |
else: | |
return module(*inputs, use_image_num=use_image_num) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward_attn(attn, return_dict=False, use_image_num=use_image_num), | |
hidden_states, | |
encoder_hidden_states, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, use_image_num=use_image_num).sample | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class UpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock3D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |