import gradio as gr import argparse import gdown import cv2 import numpy as np import os import sys sys.path.append(sys.path[0]+"/tracker") sys.path.append(sys.path[0]+"/tracker/model") from track_anything import TrackingAnything from track_anything import parse_augment, save_image_to_userfolder, read_image_from_userfolder import requests import json import torchvision import torch from tools.painter import mask_painter import psutil import time try: from mmcv.cnn import ConvModule except: os.system("mim install mmcv") # download checkpoints def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): print("download checkpoints ......") response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) print("download successfully!") return filepath def download_checkpoint_from_google_drive(file_id, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): print("Downloading checkpoints from Google Drive... tips: If you cannot see the progress bar, please try to download it manuall \ and put it in the checkpointes directory. E2FGVI-HQ-CVPR22.pth: https://github.com/MCG-NKU/E2FGVI(E2FGVI-HQ model)") url = f"https://drive.google.com/uc?id={file_id}" gdown.download(url, filepath, quiet=False) print("Downloaded successfully!") return filepath # convert points input to prompt state def get_prompt(click_state, click_input): inputs = json.loads(click_input) points = click_state[0] labels = click_state[1] for input in inputs: points.append(input[:2]) labels.append(input[2]) click_state[0] = points click_state[1] = labels prompt = { "prompt_type":["click"], "input_point":click_state[0], "input_label":click_state[1], "multimask_output":"True", } return prompt # extract frames from upload video def get_frames_from_video(video_input, video_state): """ Args: video_path:str timestamp:float64 Return [[0:nearest_frame], [nearest_frame:], nearest_frame] """ video_path = video_input frames = [] # save image path user_name = time.time() video_state["video_name"] = os.path.split(video_path)[-1] video_state["user_name"] = user_name os.makedirs(os.path.join("/tmp/{}/originimages/{}".format(video_state["user_name"], video_state["video_name"])), exist_ok=True) os.makedirs(os.path.join("/tmp/{}/paintedimages/{}".format(video_state["user_name"], video_state["video_name"])), exist_ok=True) operation_log = [("",""),("Upload video already. Try click the image for adding targets to track and inpaint.","Normal")] try: cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) if not cap.isOpened(): operation_log = [("No frames extracted, please input video file with '.mp4.' '.mov'.", "Error")] print("No frames extracted, please input video file with '.mp4.' '.mov'.") return None, None, None, None, \ None, None, None, None, \ None, None, None, None, \ None, None, gr.update(visible=True, value=operation_log) image_index = 0 while cap.isOpened(): ret, frame = cap.read() if ret == True: current_memory_usage = psutil.virtual_memory().percent # try solve memory usage problem, save image to disk instead of memory frames.append(save_image_to_userfolder(video_state, image_index, frame, True)) image_index +=1 # frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if current_memory_usage > 90: operation_log = [("Memory usage is too high (>90%). Stop the video extraction. Please reduce the video resolution or frame rate.", "Error")] print("Memory usage is too high (>90%). Please reduce the video resolution or frame rate.") break else: break except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: # except: operation_log = [("read_frame_source:{} error. {}\n".format(video_path, str(e)), "Error")] print("read_frame_source:{} error. {}\n".format(video_path, str(e))) return None, None, None, None, \ None, None, None, None, \ None, None, None, None, \ None, None, gr.update(visible=True, value=operation_log) first_image = read_image_from_userfolder(frames[0]) image_size = (first_image.shape[0], first_image.shape[1]) # initialize video_state video_state = { "user_name": user_name, "video_name": os.path.split(video_path)[-1], "origin_images": frames, "painted_images": frames.copy(), "masks": [np.zeros((image_size[0], image_size[1]), np.uint8)]*len(frames), "logits": [None]*len(frames), "select_frame_number": 0, "fps": fps } video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format(video_state["video_name"], video_state["fps"], len(frames), image_size) model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image(first_image) return video_state, video_info, first_image, gr.update(visible=True, maximum=len(frames), value=1), \ gr.update(visible=True, maximum=len(frames), value=len(frames)), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \ gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \ gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=operation_log), def run_example(example): return example # get the select frame from gradio slider def select_template(image_selection_slider, video_state, interactive_state): # images = video_state[1] image_selection_slider -= 1 video_state["select_frame_number"] = image_selection_slider # once select a new template frame, set the image in sam model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image(read_image_from_userfolder(video_state["origin_images"][image_selection_slider])) # update the masks when select a new template frame # if video_state["masks"][image_selection_slider] is not None: # video_state["painted_images"][image_selection_slider] = mask_painter(video_state["origin_images"][image_selection_slider], video_state["masks"][image_selection_slider]) operation_log = [("",""), ("Select frame {}. Try click image and add mask for tracking.".format(image_selection_slider),"Normal")] return read_image_from_userfolder(video_state["painted_images"][image_selection_slider]), video_state, interactive_state, operation_log # set the tracking end frame def get_end_number(track_pause_number_slider, video_state, interactive_state): track_pause_number_slider -= 1 interactive_state["track_end_number"] = track_pause_number_slider operation_log = [("",""),("Set the tracking finish at frame {}".format(track_pause_number_slider),"Normal")] return read_image_from_userfolder(video_state["painted_images"][track_pause_number_slider]),interactive_state, operation_log def get_resize_ratio(resize_ratio_slider, interactive_state): interactive_state["resize_ratio"] = resize_ratio_slider return interactive_state # use sam to get the mask def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): """ Args: template_frame: PIL.Image point_prompt: flag for positive or negative button click click_state: [[points], [labels]] """ if point_prompt == "Positive": coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) interactive_state["positive_click_times"] += 1 else: coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) interactive_state["negative_click_times"] += 1 # prompt for sam model model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image(read_image_from_userfolder(video_state["origin_images"][video_state["select_frame_number"]])) prompt = get_prompt(click_state=click_state, click_input=coordinate) mask, logit, painted_image = model.first_frame_click( image=read_image_from_userfolder(video_state["origin_images"][video_state["select_frame_number"]]), points=np.array(prompt["input_point"]), labels=np.array(prompt["input_label"]), multimask=prompt["multimask_output"], ) video_state["masks"][video_state["select_frame_number"]] = mask video_state["logits"][video_state["select_frame_number"]] = logit video_state["painted_images"][video_state["select_frame_number"]] = save_image_to_userfolder(video_state, index=video_state["select_frame_number"], image=cv2.cvtColor(np.asarray(painted_image),cv2.COLOR_BGR2RGB),type=False) operation_log = [("",""), ("Use SAM for segment. You can try add positive and negative points by clicking. Or press Clear clicks button to refresh the image. Press Add mask button when you are satisfied with the segment","Normal")] return painted_image, video_state, interactive_state, operation_log def add_multi_mask(video_state, interactive_state, mask_dropdown): try: mask = video_state["masks"][video_state["select_frame_number"]] interactive_state["multi_mask"]["masks"].append(mask) interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) select_frame, run_status = show_mask(video_state, interactive_state, mask_dropdown) operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")] except: operation_log = [("Please click the left image to generate mask.", "Error"), ("","")] return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log def clear_click(video_state, click_state): click_state = [[],[]] template_frame = read_image_from_userfolder(video_state["origin_images"][video_state["select_frame_number"]]) operation_log = [("",""), ("Clear points history and refresh the image.","Normal")] return template_frame, click_state, operation_log def remove_multi_mask(interactive_state, mask_dropdown): interactive_state["multi_mask"]["mask_names"]= [] interactive_state["multi_mask"]["masks"] = [] operation_log = [("",""), ("Remove all mask, please add new masks","Normal")] return interactive_state, gr.update(choices=[],value=[]), operation_log def show_mask(video_state, interactive_state, mask_dropdown): mask_dropdown.sort() select_frame = read_image_from_userfolder(video_state["origin_images"][video_state["select_frame_number"]]) for i in range(len(mask_dropdown)): mask_number = int(mask_dropdown[i].split("_")[1]) - 1 mask = interactive_state["multi_mask"]["masks"][mask_number] select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) operation_log = [("",""), ("Select {} for tracking or inpainting".format(mask_dropdown),"Normal")] return select_frame, operation_log # tracking vos def vos_tracking_video(video_state, interactive_state, mask_dropdown): operation_log = [("",""), ("Track the selected masks, and then you can select the masks for inpainting.","Normal")] model.xmem.clear_memory() if interactive_state["track_end_number"]: following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] else: following_frames = video_state["origin_images"][video_state["select_frame_number"]:] if interactive_state["multi_mask"]["masks"]: if len(mask_dropdown) == 0: mask_dropdown = ["mask_001"] mask_dropdown.sort() template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) for i in range(1,len(mask_dropdown)): mask_number = int(mask_dropdown[i].split("_")[1]) - 1 template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) video_state["masks"][video_state["select_frame_number"]]= template_mask else: template_mask = video_state["masks"][video_state["select_frame_number"]] fps = video_state["fps"] # operation error if len(np.unique(template_mask))==1: template_mask[0][0]=1 operation_log = [("Error! Please add at least one mask to track by clicking the left image.","Error"), ("","")] # return video_output, video_state, interactive_state, operation_error masks, logits, painted_images_path = model.generator(images=following_frames, template_mask=template_mask, video_state=video_state) # clear GPU memory model.xmem.clear_memory() if interactive_state["track_end_number"]: video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images_path else: video_state["masks"][video_state["select_frame_number"]:] = masks video_state["logits"][video_state["select_frame_number"]:] = logits video_state["painted_images"][video_state["select_frame_number"]:] = painted_images_path video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video interactive_state["inference_times"] += 1 print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], interactive_state["positive_click_times"]+interactive_state["negative_click_times"], interactive_state["positive_click_times"], interactive_state["negative_click_times"])) #### shanggao code for mask save if interactive_state["mask_save"]: if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])): os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0])) i = 0 print("save mask") for mask in video_state["masks"]: np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask) i+=1 #### shanggao code for mask save return video_output, video_state, interactive_state, operation_log # inpaint def inpaint_video(video_state, interactive_state, mask_dropdown): operation_log = [("",""), ("Removed the selected masks.","Normal")] # solve memory frames = np.asarray(video_state["origin_images"]) fps = video_state["fps"] inpaint_masks = np.asarray(video_state["masks"]) if len(mask_dropdown) == 0: mask_dropdown = ["mask_001"] mask_dropdown.sort() # convert mask_dropdown to mask numbers inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))] # interate through all masks and remove the masks that are not in mask_dropdown unique_masks = np.unique(inpaint_masks) num_masks = len(unique_masks) - 1 for i in range(1, num_masks + 1): if i in inpaint_mask_numbers: continue inpaint_masks[inpaint_masks==i] = 0 # inpaint for videos try: inpainted_frames = model.baseinpainter.inpaint(frames, inpaint_masks, ratio=interactive_state["resize_ratio"]) # numpy array, T, H, W, 3 video_output = generate_video_from_paintedframes(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) except: operation_log = [("Error! You are trying to inpaint without masks input. Please track the selected mask first, and then press inpaint. If VRAM exceeded, please use the resize ratio to scaling down the image size.","Error"), ("","")] inpainted_frames = video_state["origin_images"] video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video return video_output, operation_log # generate video after vos inference def generate_video_from_frames(frames_path, output_path, fps=30): """ Generates a video from a list of frames. Args: frames (list of numpy arrays): The frames to include in the video. output_path (str): The path to save the generated video. fps (int, optional): The frame rate of the output video. Defaults to 30. """ # height, width, layers = frames[0].shape # fourcc = cv2.VideoWriter_fourcc(*"mp4v") # video = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) # print(output_path) # for frame in frames: # video.write(frame) # video.release() frames = [] for file in frames_path: frames.append(read_image_from_userfolder(file)) frames = torch.from_numpy(np.asarray(frames)) if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") return output_path def generate_video_from_paintedframes(frames, output_path, fps=30): """ Generates a video from a list of frames. Args: frames (list of numpy arrays): The frames to include in the video. output_path (str): The path to save the generated video. fps (int, optional): The frame rate of the output video. Defaults to 30. """ # height, width, layers = frames[0].shape # fourcc = cv2.VideoWriter_fourcc(*"mp4v") # video = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) # print(output_path) # for frame in frames: # video.write(frame) # video.release() frames = torch.from_numpy(np.asarray(frames)) if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") return output_path # args, defined in track_anything.py args = parse_augment() # check and download checkpoints if needed SAM_checkpoint_dict = { 'vit_h': "sam_vit_h_4b8939.pth", 'vit_l': "sam_vit_l_0b3195.pth", "vit_b": "sam_vit_b_01ec64.pth" } SAM_checkpoint_url_dict = { 'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", 'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", 'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" } sam_checkpoint = SAM_checkpoint_dict[args.sam_model_type] sam_checkpoint_url = SAM_checkpoint_url_dict[args.sam_model_type] xmem_checkpoint = "XMem-s012.pth" xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth" e2fgvi_checkpoint = "E2FGVI-HQ-CVPR22.pth" e2fgvi_checkpoint_id = "10wGdKSUOie0XmCr8SQ2A2FeDe-mfn5w3" folder ="./checkpoints" SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, sam_checkpoint) xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint) e2fgvi_checkpoint = download_checkpoint_from_google_drive(e2fgvi_checkpoint_id, folder, e2fgvi_checkpoint) # args.port = 12213 # args.device = "cuda:8" # args.mask_save = True # initialize sam, xmem, e2fgvi models model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, e2fgvi_checkpoint,args) title = """
Gradio demo for Track Anything, a flexible and interactive tool for video object tracking, segmentation, and inpainting. To use it, simply upload your video, or click one of the examples to load them. Code: Track-Anything If you stuck in unknown errors, please feel free to watch the Tutorial video.
""" with gr.Blocks() as iface: """ state for """ click_state = gr.State([[],[]]) interactive_state = gr.State({ "inference_times": 0, "negative_click_times" : 0, "positive_click_times": 0, "mask_save": args.mask_save, "multi_mask": { "mask_names": [], "masks": [] }, "track_end_number": None, "resize_ratio": 0.6 } ) video_state = gr.State( { "user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 30 } ) gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): with gr.Tab("Test"): # for user video input with gr.Column(): with gr.Row(scale=0.4): video_input = gr.Video(autosize=True) with gr.Column(): video_info = gr.Textbox(label="Video Info") resize_info = gr.Textbox(value="If you want to use the inpaint function, it is best to git clone the repo and use a machine with more VRAM locally. \ Alternatively, you can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.", label="Tips for running this demo.") resize_ratio_slider = gr.Slider(minimum=0.02, maximum=1, step=0.02, value=0.6, label="Resize ratio", visible=True) with gr.Row(): # put the template frame under the radio button with gr.Column(): # extract frames with gr.Column(): extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") # click points settins, negative or positive, mode continuous or single with gr.Row(): with gr.Row(): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point prompt", interactive=True, visible=False) remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False) clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False).style(height=160) Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False) template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False).style(height=360) image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False) track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) with gr.Column(): run_status = gr.HighlightedText(value=[("Run","Error"),("Status","Normal")], visible=True) mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False) video_output = gr.Video(autosize=True, visible=False).style(height=360) with gr.Row(): tracking_video_predict_button = gr.Button(value="Tracking", visible=False) inpaint_video_predict_button = gr.Button(value="Inpaint", visible=False) # set example gr.Markdown("## Examples") gr.Examples( examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample8.mp4","test-sample4.mp4", \ "test-sample2.mp4","test-sample13.mp4"]], fn=run_example, inputs=[ video_input ], outputs=[video_input], # cache_examples=True, ) with gr.Tab("Tutorial"): with gr.Column(): with gr.Row(scale=0.4): video_demo_operation = gr.Video(autosize=True) # set example gr.Markdown("## Operation tutorial video") gr.Examples( examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["huggingface_demo_operation.mp4"]], fn=run_example, inputs=[ video_demo_operation ], outputs=[video_demo_operation], # cache_examples=True, ) # first step: get the video information extract_frames_button.click( fn=get_frames_from_video, inputs=[ video_input, video_state ], outputs=[video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button, inpaint_video_predict_button, run_status] ) # second step: select images from slider image_selection_slider.release(fn=select_template, inputs=[image_selection_slider, video_state, interactive_state], outputs=[template_frame, video_state, interactive_state, run_status], api_name="select_image") track_pause_number_slider.release(fn=get_end_number, inputs=[track_pause_number_slider, video_state, interactive_state], outputs=[template_frame, interactive_state, run_status], api_name="end_image") resize_ratio_slider.release(fn=get_resize_ratio, inputs=[resize_ratio_slider, interactive_state], outputs=[interactive_state], api_name="resize_ratio") # click select image to get mask using sam template_frame.select( fn=sam_refine, inputs=[video_state, point_prompt, click_state, interactive_state], outputs=[template_frame, video_state, interactive_state, run_status] ) # add different mask Add_mask_button.click( fn=add_multi_mask, inputs=[video_state, interactive_state, mask_dropdown], outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status] ) remove_mask_button.click( fn=remove_multi_mask, inputs=[interactive_state, mask_dropdown], outputs=[interactive_state, mask_dropdown, run_status] ) # tracking video from select image and mask tracking_video_predict_button.click( fn=vos_tracking_video, inputs=[video_state, interactive_state, mask_dropdown], outputs=[video_output, video_state, interactive_state, run_status] ) # inpaint video from select image and mask inpaint_video_predict_button.click( fn=inpaint_video, inputs=[video_state, interactive_state, mask_dropdown], outputs=[video_output, run_status] ) # click to get mask mask_dropdown.change( fn=show_mask, inputs=[video_state, interactive_state, mask_dropdown], outputs=[template_frame, run_status] ) # clear input video_input.clear( lambda: ( { "user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 30 }, { "inference_times": 0, "negative_click_times" : 0, "positive_click_times": 0, "mask_save": args.mask_save, "multi_mask": { "mask_names": [], "masks": [] }, "track_end_number": 0, "resize_ratio": 0.6 }, [[],[]], None, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=[]), gr.update(visible=False), \ gr.update(visible=False), gr.update(visible=True) ), [], [ video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button,inpaint_video_predict_button, run_status ], queue=False, show_progress=False) # points clear clear_button_click.click( fn = clear_click, inputs = [video_state, click_state,], outputs = [template_frame,click_state, run_status], ) iface.queue(concurrency_count=1) # iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0") iface.launch(debug=True, enable_queue=True)