File size: 14,738 Bytes
4d1ebf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import gradio as gr
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
import argparse
import cv2
import time   
from PIL import Image
import numpy as np
import os
import sys
sys.path.append(sys.path[0]+"/tracker")
sys.path.append(sys.path[0]+"/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
import requests
import json
import torchvision
import torch 
import concurrent.futures
import queue

def download_checkpoint(url, folder, filename):
    os.makedirs(folder, exist_ok=True)
    filepath = os.path.join(folder, filename)

    if not os.path.exists(filepath):
        print("download checkpoints ......")
        response = requests.get(url, stream=True)
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)

        print("download successfully!")

    return filepath

def pause_video(play_state):
    print("user pause_video")
    play_state.append(time.time())
    return play_state

def play_video(play_state):
    print("user play_video")
    play_state.append(time.time())
    return play_state

# convert points input to prompt state
def get_prompt(click_state, click_input):
    inputs = json.loads(click_input)
    points = click_state[0]
    labels = click_state[1]
    for input in inputs:
        points.append(input[:2])
        labels.append(input[2])
    click_state[0] = points
    click_state[1] = labels
    prompt = {
        "prompt_type":["click"],
        "input_point":click_state[0],
        "input_label":click_state[1],
        "multimask_output":"True",
    }
    return prompt
    
def get_frames_from_video(video_input, play_state):
    """
    Args:
        video_path:str
        timestamp:float64
    Return 
        [[0:nearest_frame], [nearest_frame:], nearest_frame]
    """
    video_path = video_input
    # video_name = video_path.split('/')[-1]
    
    try:
        timestamp = play_state[1] - play_state[0]
    except:
        timestamp = 0
    frames = []
    try:
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        while cap.isOpened():
            ret, frame = cap.read()
            if ret == True:
                frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            else:
                break
    except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
        print("read_frame_source:{} error. {}\n".format(video_path, str(e)))

    # for index, frame in enumerate(frames):
        # frames[index] = np.asarray(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
    
    key_frame_index = int(timestamp * fps)
    nearest_frame = frames[key_frame_index]
    frames_split = [frames[:key_frame_index], frames[key_frame_index:], nearest_frame]
    # output_path='./seperate.mp4'
    # torchvision.io.write_video(output_path, frames[1], fps=fps, video_codec="libx264")

    # set image in sam when select the template frame
    model.samcontroler.sam_controler.set_image(nearest_frame)
    return frames_split, nearest_frame, nearest_frame, fps

def generate_video_from_frames(frames, output_path, fps=30):
    """
    Generates a video from a list of frames.
    
    Args:
        frames (list of numpy arrays): The frames to include in the video.
        output_path (str): The path to save the generated video.
        fps (int, optional): The frame rate of the output video. Defaults to 30.
    """
    # height, width, layers = frames[0].shape
    # fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    # video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    
    # for frame in frames:
    #     video.write(frame)
    
    # video.release()
    frames = torch.from_numpy(np.asarray(frames))
    output_path='./output.mp4'
    torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
    return output_path

def model_reset():
    model.xmem.clear_memory()
    return None

def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData):
    """
    Args:
        template_frame: PIL.Image
        point_prompt: flag for positive or negative button click
        click_state: [[points], [labels]]
    """
    if point_prompt == "Positive":
        coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
    else:
        coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
    
    # prompt for sam model
    prompt = get_prompt(click_state=click_state, click_input=coordinate)

    # default value
    # points = np.array([[evt.index[0],evt.index[1]]])
    # labels= np.array([1])
    if len(logit)==0:
        logit = None
    
    mask, logit, painted_image = model.first_frame_click( 
                                                      image=origin_frame, 
                                                      points=np.array(prompt["input_point"]),
                                                      labels=np.array(prompt["input_label"]),
                                                      multimask=prompt["multimask_output"],
                                                      )
    return painted_image, click_state, logit, mask



def vos_tracking_video(video_state, template_mask,fps,video_input):

    masks, logits, painted_images = model.generator(images=video_state[1], template_mask=template_mask)
    video_output = generate_video_from_frames(painted_images, output_path="./output.mp4", fps=fps)
    # image_selection_slider = gr.Slider(minimum=1, maximum=len(video_state[1]), value=1, label="Image Selection", interactive=True)
    video_name = video_input.split('/')[-1].split('.')[0]
    result_path = os.path.join('/hhd3/gaoshang/Track-Anything/results/'+video_name)
    if not os.path.exists(result_path):
        os.makedirs(result_path)
    i=0
    for mask in masks:
        np.save(os.path.join(result_path,'{:05}.npy'.format(i)), mask)
        i+=1
    return video_output, painted_images, masks, logits

def vos_tracking_image(image_selection_slider, painted_images):

    # images = video_state[1]
    percentage = image_selection_slider / 100
    select_frame_num = int(percentage * len(painted_images))
    return painted_images[select_frame_num], select_frame_num

def interactive_correction(video_state, point_prompt, click_state, select_correction_frame, evt: gr.SelectData):
    """
    Args:
        template_frame: PIL.Image
        point_prompt: flag for positive or negative button click
        click_state: [[points], [labels]]
    """
    refine_image = video_state[1][select_correction_frame]
    if point_prompt == "Positive":
        coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
    else:
        coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
    
    # prompt for sam model
    prompt = get_prompt(click_state=click_state, click_input=coordinate)
    model.samcontroler.seg_again(refine_image)
    corrected_mask, corrected_logit, corrected_painted_image = model.first_frame_click( 
                                                      image=refine_image, 
                                                      points=np.array(prompt["input_point"]),
                                                      labels=np.array(prompt["input_label"]),
                                                      multimask=prompt["multimask_output"],
                                                      )
    return corrected_painted_image, [corrected_mask, corrected_logit, corrected_painted_image]

def correct_track(video_state, select_correction_frame, corrected_state, masks, logits, painted_images, fps, video_input):
    model.xmem.clear_memory()
    # inference the following images
    following_images = video_state[1][select_correction_frame:]
    corrected_masks, corrected_logits, corrected_painted_images = model.generator(images=following_images, template_mask=corrected_state[0])
    masks = masks[:select_correction_frame] + corrected_masks
    logits = logits[:select_correction_frame] + corrected_logits
    painted_images = painted_images[:select_correction_frame] + corrected_painted_images
    video_output = generate_video_from_frames(painted_images, output_path="./output.mp4", fps=fps)

    video_name = video_input.split('/')[-1].split('.')[0]
    result_path = os.path.join('/hhd3/gaoshang/Track-Anything/results/'+video_name)
    if not os.path.exists(result_path):
        os.makedirs(result_path)
    i=0
    for mask in masks:
        np.save(os.path.join(result_path,'{:05}.npy'.format(i)), mask)
        i+=1
    return video_output, painted_images, logits, masks 

# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth" 
sam_checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
folder ="./checkpoints"
SAM_checkpoint = download_checkpoint(sam_checkpoint_url, folder, SAM_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)

# args, defined in track_anything.py
args = parse_augment()
args.port = 12207
args.device = "cuda:5"

model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)

with gr.Blocks() as iface:
    """
        state for 
    """
    state = gr.State([])
    play_state = gr.State([])
    video_state = gr.State([[],[],[]])
    click_state = gr.State([[],[]])
    logits = gr.State([])
    masks = gr.State([])
    painted_images = gr.State([])
    origin_image = gr.State(None)
    template_mask = gr.State(None)
    select_correction_frame = gr.State(None)
    corrected_state = gr.State([[],[],[]])
    fps = gr.State([])
    # video_name = gr.State([])
    # queue value for image refresh, origin image, mask, logits, painted image



    with gr.Row():

        # for user video input
        with gr.Column(scale=1.0):
            video_input = gr.Video().style(height=720)

            # listen to the user action for play and pause input video
            video_input.play(fn=play_video, inputs=play_state, outputs=play_state, scroll_to_output=True, show_progress=True)
            video_input.pause(fn=pause_video, inputs=play_state, outputs=play_state)
          

            with gr.Row(scale=1):
                # put the template frame under the radio button
                with gr.Column(scale=0.5):
                     # click points settins, negative or positive, mode continuous or single
                    with gr.Row():
                        with gr.Row(scale=0.5):
                            point_prompt = gr.Radio(
                                choices=["Positive",  "Negative"],
                                value="Positive",
                                label="Point Prompt",
                                interactive=True)
                            click_mode = gr.Radio(
                                choices=["Continuous",  "Single"],
                                value="Continuous",
                                label="Clicking Mode",
                                interactive=True)
                        with gr.Row(scale=0.5):
                            clear_button_clike = gr.Button(value="Clear Clicks", interactive=True).style(height=160)
                            clear_button_image = gr.Button(value="Clear Image", interactive=True)
                    template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame").style(height=360)
                    with gr.Column():
                        template_select_button = gr.Button(value="Template select", interactive=True, variant="primary")
                    
                   
            
                with gr.Column(scale=0.5):


                    # for intermedia result check and correction
                    # intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
                    video_output = gr.Video().style(height=360)
                    tracking_video_predict_button = gr.Button(value="Tracking")

                    image_output = gr.Image(type="pil", interactive=True, elem_id="image_output").style(height=360)
                    image_selection_slider = gr.Slider(minimum=0, maximum=100, step=0.1, value=0, label="Image Selection", interactive=True)
                    correct_track_button = gr.Button(value="Interactive Correction")

    template_frame.select(
        fn=sam_refine,
        inputs=[
            origin_image, point_prompt, click_state, logits
        ],
        outputs=[
            template_frame, click_state, logits, template_mask
        ]
    )
            
    template_select_button.click(
        fn=get_frames_from_video,
        inputs=[
            video_input, 
            play_state
        ],
        # outputs=[video_state, template_frame, origin_image, fps, video_name],
        outputs=[video_state, template_frame, origin_image, fps],
    )   

    tracking_video_predict_button.click(
        fn=vos_tracking_video,
        inputs=[video_state, template_mask, fps, video_input],
        outputs=[video_output, painted_images, masks, logits]
    )
    image_selection_slider.release(fn=vos_tracking_image, 
                                   inputs=[image_selection_slider, painted_images], outputs=[image_output, select_correction_frame], api_name="select_image")
    # correction
    image_output.select(
        fn=interactive_correction,
        inputs=[video_state, point_prompt, click_state, select_correction_frame],
        outputs=[image_output, corrected_state]
    )
    correct_track_button.click(
        fn=correct_track,
        inputs=[video_state, select_correction_frame, corrected_state, masks, logits, painted_images, fps,video_input],
        outputs=[video_output, painted_images, logits, masks ]
    )
   
    
    
    # clear input
    video_input.clear(
        lambda: ([], [], [[], [], []], 
                 None, "", "", "", "", "", "", "", [[],[]],
                 None),
        [],
        [ state, play_state, video_state, 
         template_frame, video_output, image_output, origin_image, template_mask, painted_images, masks, logits, click_state,
         select_correction_frame],
        queue=False,
        show_progress=False
    )
    clear_button_image.click(
        fn=model_reset
    )
    clear_button_clike.click(
       lambda: ([[],[]]),
        [],
        [click_state],
        queue=False,
        show_progress=False
    ) 
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")