File size: 17,884 Bytes
e20ef71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts (https://arxiv.org/abs/2111.08276)
# Github: https://github.com/zengyan-97/X-VLM
# Copyright (c) 2022, ByteDance Inc.
# All rights reserved.
import json
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from xvlm.swin_transformer import SwinTransformer, interpolate_relative_pos_embed
from xvlm.vit import interpolate_pos_embed
from xvlm.xbert import BertConfig, BertForMaskedLM, BertModel
def read_json(rpath):
with open(rpath, 'r') as f:
return json.load(f)
class AllGather(torch.autograd.Function):
"""An autograd function that performs allgather on a tensor."""
@staticmethod
def forward(ctx, tensor, rank, world_size):
output = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(output, tensor)
ctx.rank = rank
ctx.batch_size = tensor.shape[0]
return torch.cat(output, 0)
@staticmethod
def backward(ctx, grad_output):
return (
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
None,
None
)
allgather = AllGather.apply
def build_vision_encoder(vision_config, load_params=False):
"""
Args:
load_params: False when building fine-tuning models
"""
vision_width = vision_config['vision_width']
vision_encoder = SwinTransformer(img_size=vision_config['image_res'],
patch_size=4,
in_chans=3,
embed_dim=vision_config['embed_dim'],
depths=vision_config['depths'],
num_heads=vision_config['num_heads'],
window_size=vision_config['window_size'],
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False)
if load_params:
# download from https://github.com/microsoft/Swin-Transformer
state_dict = torch.load(vision_config['ckpt'], map_location="cpu")['model']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * vision_config['window_size'] - 1) ** 2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
if load_params:
print("### Load ViT: ", flush=True)
msg = vision_encoder.load_state_dict(state_dict, strict=False)
print("missing_keys: ", msg.missing_keys)
print("unexpected_keys: ", msg.unexpected_keys)
return vision_encoder, vision_width
def build_text_encoder(config, vision_width, load_text_params=False, use_mlm_loss=False, config_text=None):
init_params = [] # train from scratch with larger lr
config_text = BertConfig.from_json_file('xvlm/config_bert.json')
config_text.encoder_width = vision_width
if use_mlm_loss: # for pre-training, load_text_params by default (otherwise notimplemented)
assert load_text_params is True
if ('accelerator' in config.keys()) and (config['accelerator']['FP16_OPT_LEVEL'] != 'O0'):
config_text.fp16 = True # will use some operations to avoid gradient overflow
text_encoder, msg = BertForMaskedLM.from_pretrained(config['text_encoder'], config=config_text,
output_loading_info=True)
print("### Load BERT: ")
for k, v in msg.items():
print(f"{k}: {sorted(v)}")
init_params.extend(['text_encoder.' + n for n in msg['missing_keys']]) # of cross attention
if ('load_bertL_by_sep' in config.keys()) and config['load_bertL_by_sep']:
state_dict = torch.load(os.path.join(config['text_encoder'], 'pytorch_model.bin'))
for idx, i_layer in enumerate([13, 15, 17, 19, 21, 23]):
state_dict_i = {k[22:]: v for k, v in state_dict.items() if f'layer.{i_layer}' in k}
msg = text_encoder.bert.encoder.layer[config_text.fusion_layer + idx]. \
load_state_dict(state_dict_i, strict=False)
print(f"### Load {i_layer} to {config_text.fusion_layer + idx}-layer: {msg}")
else: # for fine-tuning, not load_text_params by default
assert load_text_params is False
text_encoder = BertModel(config=config_text, add_pooling_layer=False)
return text_encoder, init_params
def build_mlp(input_dim, output_dim):
return nn.Sequential(
nn.Linear(input_dim, input_dim * 2),
nn.LayerNorm(input_dim * 2),
nn.GELU(),
nn.Linear(input_dim * 2, output_dim)
)
def load_pretrained(ckpt_rpath, config, is_eval=False, load_text=False):
checkpoint = torch.load(ckpt_rpath, map_location='cpu')
state_dict = checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint
if is_eval:
return state_dict
num_patches = (config['image_res'] // config['patch_size']) ** 2
print("### Loading pretrained vision encoder", flush=True)
if config['use_clip_vit']:
del state_dict['vision_encoder.position_ids']
pos_embed_reshaped = interpolate_pos_embed(state_dict['vision_encoder.pos_embed.weight'].unsqueeze(dim=0),
num_patches=num_patches, num_extra_tokens=1)
state_dict['vision_encoder.pos_embed.weight'] = pos_embed_reshaped.squeeze(dim=0)
elif config['use_swin']:
window_size = read_json(config['vision_config'])['window_size']
for k in list(state_dict.keys()):
if 'relative_position_bias_table' in k:
dst_num_pos = (2 * window_size - 1) ** 2
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
elif ('relative_position_index' in k) or ('attn_mask' in k):
del state_dict[k]
else:
pos_embed_reshaped = interpolate_pos_embed(state_dict['vision_encoder.pos_embed'],
num_patches=num_patches, num_extra_tokens=1)
state_dict['vision_encoder.pos_embed'] = pos_embed_reshaped
if load_text:
print("### Loading pretrained text encoder", flush=True)
for key in list(state_dict.keys()):
if 'text_encoder.' in key:
if 'bert.' in key:
encoder_key = key.replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
return state_dict
class XVLMBase(nn.Module):
def __init__(self, config=None, load_vision_params=False, load_text_params=False,
use_contrastive_loss=False, use_matching_loss=False, use_mlm_loss=False, use_bbox_loss=False,
config_text=None, vision_config=None):
super().__init__()
self.init_params = [] # train from scratch with larger lr
self.vision_encoder, vision_width = build_vision_encoder(vision_config, load_params=load_vision_params)
self.text_encoder, init_params = build_text_encoder(vision_config, vision_width=vision_width,
load_text_params=load_text_params,
use_mlm_loss=use_mlm_loss,
config_text=config_text) # text & cross-modal
self.init_params.extend(init_params)
self.vision_width = vision_width
self.text_width = self.text_encoder.config.hidden_size # i.e. cross_width
if use_contrastive_loss:
self.embed_dim = config['embed_dim']
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
self.text_proj = nn.Linear(self.text_width, self.embed_dim)
self.init_params.extend(['vision_proj.' + n for n, _ in self.vision_proj.named_parameters()])
self.init_params.extend(['text_proj.' + n for n, _ in self.text_proj.named_parameters()])
if use_matching_loss:
self.itm_head = build_mlp(input_dim=self.text_width, output_dim=2)
self.init_params.extend(['itm_head.' + n for n, _ in self.itm_head.named_parameters()])
if use_bbox_loss:
self.bbox_head = build_mlp(input_dim=self.text_width, output_dim=4)
self.init_params.extend(['bbox_head.' + n for n, _ in self.bbox_head.named_parameters()])
def load_pretrained(self, ckpt_rpath, config, is_eval=False):
state_dict = load_pretrained(ckpt_rpath, config, is_eval=is_eval, load_text=True)
msg = self.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % ckpt_rpath)
print("missing_keys: ", [p for p in msg.missing_keys if 'vision_encoder' not in p])
print("unexpected_keys: ", msg.unexpected_keys)
def get_vision_embeds(self, image, image_atts=None, idx_to_group_img=None):
"""
vision_embeds: cls + patch embeds
"""
if idx_to_group_img is None:
image_embeds = self.vision_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
return image_embeds, image_atts
else:
if image_atts is None:
image_embeds_fullatts = self.vision_encoder(image)
image_embeds_fullatts = torch.gather(image_embeds_fullatts, dim=0,
index=idx_to_group_img.view(-1, 1, 1).expand(
-1, image_embeds_fullatts.shape[1],
image_embeds_fullatts.shape[2]))
image_atts = torch.ones(image_embeds_fullatts.size()[:-1], dtype=torch.long).to(image.device)
return image_embeds_fullatts, image_atts
else:
assert image_atts.size(0) == idx_to_group_img.size(0) # bsz
image_embeds, image_embeds_fullatts = \
self.vision_encoder(image, idx_to_group_img=idx_to_group_img, image_atts=image_atts)
image_embeds_fullatts = torch.gather(image_embeds_fullatts, dim=0,
index=idx_to_group_img.view(-1, 1, 1).expand(
-1, image_embeds_fullatts.shape[1],
image_embeds_fullatts.shape[2]))
return image_embeds, image_atts, image_embeds_fullatts
def get_text_embeds(self, text_ids, text_atts):
encoder = self.text_encoder.bert if hasattr(self.text_encoder, 'bert') else self.text_encoder
return encoder(text_ids, attention_mask=text_atts, return_dict=True, mode='text').last_hidden_state
def get_cross_embeds(self, image_embeds, image_atts, text_ids=None, text_embeds=None, text_atts=None):
assert text_atts is not None
encoder = self.text_encoder.bert if hasattr(self.text_encoder, 'bert') else self.text_encoder
if text_embeds is not None:
return encoder(encoder_embeds=text_embeds,
attention_mask=text_atts,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode='fusion',
).last_hidden_state
elif text_ids is not None:
return encoder(text_ids,
attention_mask=text_atts,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
).last_hidden_state
else:
raise ValueError
def get_features(self, image_embeds=None, text_embeds=None):
if image_embeds is None:
return F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
elif text_embeds is None:
return F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
else:
return F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1), \
F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
def get_contrastive_loss(self, image_feat, text_feat, idx=None):
"""
Args:
image_feat, text_feat: normalized
Returns: contrastive loss
"""
assert image_feat.size(-1) == self.embed_dim
assert text_feat.size(-1) == self.embed_dim
image_feat_all = allgather(image_feat, torch.distributed.get_rank(), torch.distributed.get_world_size())
text_feat_all = allgather(text_feat, torch.distributed.get_rank(), torch.distributed.get_world_size())
logits = image_feat_all @ text_feat_all.t() / self.temp
bsz = image_feat_all.shape[0]
if idx is None:
labels = torch.arange(bsz, device=image_feat.device)
loss_i2t = F.cross_entropy(logits, labels)
loss_t2i = F.cross_entropy(logits.t(), labels)
else:
idx = idx.view(-1, 1)
assert idx.size(0) == image_feat.size(0)
idx_all = allgather(idx, torch.distributed.get_rank(), torch.distributed.get_world_size())
pos_idx = torch.eq(idx_all, idx_all.t()).float()
labels = pos_idx / pos_idx.sum(1, keepdim=True)
loss_i2t = -torch.sum(F.log_softmax(logits, dim=1) * labels, dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(logits.t(), dim=1) * labels, dim=1).mean()
return (loss_i2t + loss_t2i) / 2
def get_matching_loss(self, image_embeds, image_atts, image_feat, text_embeds, text_atts, text_feat, idx=None):
"""
Matching Loss with hard negatives
"""
bs = image_embeds.size(0)
with torch.no_grad():
sim_i2t = image_feat @ text_feat.t() / self.temp
sim_t2i = text_feat @ image_feat.t() / self.temp
weights_i2t = F.softmax(sim_i2t, dim=1) + 1e-5
weights_t2i = F.softmax(sim_t2i, dim=1) + 1e-5
if idx is None:
weights_i2t.fill_diagonal_(0)
weights_t2i.fill_diagonal_(0)
else:
idx = idx.view(-1, 1)
assert idx.size(0) == bs
mask = torch.eq(idx, idx.t())
weights_i2t.masked_fill_(mask, 0)
weights_t2i.masked_fill_(mask, 0)
image_embeds_neg = []
image_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_atts_neg.append(image_atts[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
image_atts_neg = torch.stack(image_atts_neg, dim=0)
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text_atts[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text_atts, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts_neg, image_atts], dim=0)
cross_pos = self.get_cross_embeds(image_embeds, image_atts, text_embeds=text_embeds, text_atts=text_atts)[:, 0,
:]
cross_neg = self.get_cross_embeds(image_embeds_all, image_atts_all, text_embeds=text_embeds_all,
text_atts=text_atts_all)[:, 0, :]
output = self.itm_head(torch.cat([cross_pos, cross_neg], dim=0))
itm_labels = torch.cat([torch.ones(bs, dtype=torch.long),
torch.zeros(2 * bs, dtype=torch.long)], dim=0).to(image_embeds.device)
return F.cross_entropy(output, itm_labels)
def get_mlm_loss(self, text_ids_masked, text_atts, image_embeds, image_atts, masked_pos, masked_ids):
return self.text_encoder(text_ids_masked,
attention_mask=text_atts,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
labels=masked_ids,
masked_pos=masked_pos).loss
def predict_bbox(self, image_embeds, text_embeds, text_atts):
"""
Args:
image_embeds: encoding full images
Returns:
output_coord: bsz, 4
"""
assert image_embeds.size(0) == text_embeds.size(0)
output_cls = self.get_cross_embeds(image_embeds, torch.ones(image_embeds.shape[:2]).to(image_embeds.device),
text_embeds=text_embeds, text_atts=text_atts)[:, 0, :]
output_coord = self.bbox_head(output_cls).sigmoid()
return output_coord
|