Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import glob | |
import torch | |
from PIL import Image | |
from copy import deepcopy | |
import sys | |
import tempfile | |
from huggingface_hub import snapshot_download | |
LOCAL_CODE = os.environ.get("LOCAL_CODE", "1") == "1" | |
AUTH = ("admin", os.environ["PASSWD"]) if "PASSWD" in os.environ else None | |
code_dir = snapshot_download("zouzx/TriplaneGaussian", local_dir="./code", token=os.environ["HF_TOKEN"]) if not LOCAL_CODE else "./code" | |
sys.path.append(code_dir) | |
if not LOCAL_CODE: | |
import subprocess | |
subprocess.run(["pip", "install", "--upgrade", "gradio"]) | |
import gradio as gr | |
print("gr version: ", gr.__version__) | |
from utils import image_preprocess, pred_bbox, sam_init, sam_out_nosave, todevice | |
from gradio_splatting.backend.gradio_model3dgs import Model3DGS | |
import tgs | |
from tgs.utils.config import ExperimentConfig, load_config | |
from tgs.systems.infer import TGS | |
SAM_CKPT_PATH = "code/checkpoints/sam_vit_h_4b8939.pth" | |
MODEL_CKPT_PATH = "code/checkpoints/tgs_lvis_100v_rel.ckpt" | |
CONFIG = "code/configs/single-rel.yaml" | |
EXP_ROOT_DIR = "./outputs-gradio" | |
os.makedirs(EXP_ROOT_DIR, exist_ok=True) | |
gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0") | |
device = "cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu" | |
print("device: ", device) | |
# load SAM checkpoint | |
sam_predictor = sam_init(SAM_CKPT_PATH, gpu) | |
print("load sam ckpt done.") | |
# init system | |
base_cfg: ExperimentConfig | |
base_cfg = load_config(CONFIG, cli_args=[], n_gpus=1) | |
base_cfg.system.weights = MODEL_CKPT_PATH | |
system = TGS(cfg=base_cfg.system).to(device) | |
print("load model ckpt done.") | |
HEADER = """ | |
# Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers | |
<div> | |
<a style="display: inline-block;" href="https://arxiv.org/abs/2312.09147"><img src="https://img.shields.io/badge/arxiv-2312.09147-B31B1B.svg"></a> | |
</div> | |
TGS enables fast reconstruction from single-view image in a few seconds based on a hybrid Triplane-Gaussian 3D representation. | |
This model is trained on Objaverse-LVIS (**~45K** synthetic objects) only. And note that we normalize the input camera pose to a pre-set viewpoint during training stage following LRM, rather than directly using camera pose of input camera as implemented in our original paper. | |
**Tips:** | |
1. If you find the result is unsatisfied, please try to change the camera distance. It perhaps improves the results. | |
2. Please wait until the completion of the reconstruction of the previous model before proceeding with the next one, otherwise, it may cause bug. We will fix it soon. | |
""" | |
def assert_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image selected or uploaded!") | |
def resize_image(input_raw, size): | |
w, h = input_raw.size | |
ratio = size / max(w, h) | |
resized_w = int(w * ratio) | |
resized_h = int(h * ratio) | |
return input_raw.resize((resized_w, resized_h), Image.Resampling.LANCZOS) | |
def preprocess(input_raw, save_path): | |
# if not preprocess: | |
# print("No preprocess") | |
# # return image_path | |
# input_raw = Image.open(image_path) | |
# input_raw.thumbnail([512, 512], Image.Resampling.LANCZOS) | |
input_raw = resize_image(input_raw, 512) | |
print("image size:", input_raw.size) | |
image_sam = sam_out_nosave( | |
sam_predictor, input_raw.convert("RGB"), pred_bbox(input_raw) | |
) | |
save_path = os.path.join(save_path, "input_rgba.png") | |
# if save_path is None: | |
# save_path, ext = os.path.splitext(image_path) | |
# save_path = save_path + "_rgba.png" | |
image_preprocess(image_sam, save_path, lower_contrast=False, rescale=True) | |
# print("image save path = ", save_path) | |
return save_path | |
def init_trial_dir(): | |
trial_dir = tempfile.TemporaryDirectory(dir=EXP_ROOT_DIR).name | |
os.makedirs(trial_dir, exist_ok=True) | |
return trial_dir | |
def infer(image_path: str, | |
cam_dist: float, | |
save_path: str, | |
only_3dgs: bool = False): | |
data_cfg = deepcopy(base_cfg.data) | |
data_cfg.only_3dgs = only_3dgs | |
data_cfg.cond_camera_distance = cam_dist | |
data_cfg.eval_camera_distance = cam_dist | |
data_cfg.image_list = [image_path] | |
dm = tgs.find(base_cfg.data_cls)(data_cfg) | |
dm.setup() | |
for batch_idx, batch in enumerate(dm.test_dataloader()): | |
batch = todevice(batch, device) | |
system.test_step(save_path, batch, batch_idx, save_3dgs=only_3dgs) | |
if not only_3dgs: | |
system.on_test_epoch_end(save_path) | |
def run(image_path: str, | |
cam_dist: float, | |
save_path: str): | |
infer(image_path, cam_dist, save_path, only_3dgs=True) | |
gs = glob.glob(os.path.join(save_path, "*.ply"))[0] | |
# print("save gs", gs) | |
return gs | |
def run_video(image_path: str, | |
cam_dist: float, | |
save_path: str): | |
infer(image_path, cam_dist, save_path) | |
video = glob.glob(os.path.join(save_path, "*.mp4"))[0] | |
# print("save video", video) | |
return video | |
def launch(port): | |
with gr.Blocks( | |
title="TGS - Demo" | |
) as demo: | |
with gr.Row(variant='panel'): | |
gr.Markdown(HEADER) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
input_image = gr.Image(value=None, image_mode="RGB", width=512, height=512, type="pil", sources="upload", label="Input Image") | |
gr.Markdown( | |
""" | |
**Camera distance** denotes the distance between camera center and scene center. | |
If you find the 3D model appears flattened, you can increase it. Conversely, if the 3D model appears thick, you can decrease it. | |
""" | |
) | |
camera_dist_slider = gr.Slider(1.0, 4.0, value=1.9, step=0.1, label="Camera Distance") | |
# preprocess_ckb = gr.Checkbox(value=True, label="Remove background") | |
img_run_btn = gr.Button("Reconstruction", variant="primary") | |
gr.Examples( | |
examples=[ | |
"example_images/green_parrot.webp", | |
"example_images/rusty_gameboy.webp", | |
"example_images/a_pikachu_with_smily_face.webp", | |
"example_images/an_otter_wearing_sunglasses.webp", | |
"example_images/lumberjack_axe.webp", | |
"example_images/medieval_shield.webp", | |
"example_images/a_cat_dressed_as_the_pope.webp", | |
"example_images/a_cute_little_frog_comicbook_style.webp", | |
"example_images/a_purple_winter_jacket.webp", | |
"example_images/MP5,_high_quality,_ultra_realistic.webp", | |
"example_images/retro_pc_photorealistic_high_detailed.webp", | |
"example_images/stratocaster_guitar_pixar_style.webp" | |
], | |
inputs=[input_image], | |
cache_examples=False, | |
label="Examples", | |
examples_per_page=40 | |
) | |
with gr.Column(scale=1): | |
with gr.Row(variant='panel'): | |
seg_image = gr.Image(value=None, width="auto", type="filepath", image_mode="RGBA", label="Segmented Image", interactive=False) | |
output_video = gr.Video(value=None, width="auto", label="Rendered Video", autoplay=True) | |
output_3dgs = Model3DGS(value=None, label="3D Model") | |
trial_dir = gr.State() | |
img_run_btn.click( | |
fn=assert_input_image, | |
inputs=[input_image], | |
queue=False | |
).success( | |
fn=init_trial_dir, | |
outputs=[trial_dir], | |
queue=False | |
).success( | |
fn=preprocess, | |
inputs=[input_image, trial_dir], | |
outputs=[seg_image], | |
).success(fn=run, | |
inputs=[seg_image, camera_dist_slider, trial_dir], | |
outputs=[output_3dgs], | |
).success(fn=run_video, | |
inputs=[seg_image, camera_dist_slider, trial_dir], | |
outputs=[output_video]) | |
launch_args = {"server_port": port} | |
demo.queue(max_size=20) | |
demo.launch(auth=AUTH, **launch_args) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
args, extra = parser.parse_known_args() | |
parser.add_argument("--port", type=int, default=7860) | |
args = parser.parse_args() | |
launch(args.port) |