import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from globe import title, description, customtool, presentation1, presentation2, joinus import spaces model_path = "nvidia/Mistral-NeMo-Minitron-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def create_prompt(system_message, user_message, tool_definition="", context=""): if tool_definition: return f"""System {system_message} {tool_definition} {context} User {user_message} Assistant """ else: return f"System\n{system_message}\n\nUser\n{user_message}\nAssistant\n" @spaces.GPU(duration=94) def generate_response(message, history, system_message, max_tokens, temperature, top_p, do_sample, use_pipeline=False, tool_definition="", context=""): full_prompt = create_prompt(system_message, message, tool_definition, context) if use_pipeline: response = pipe(full_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True)[0]['generated_text'] else: max_model_length = model.config.max_position_embeddings if hasattr(model.config, 'max_position_embeddings') else 8192 max_length = max_model_length - max_tokens inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=max_length) input_ids = inputs['input_ids'].to(model.device) attention_mask = inputs['attention_mask'].to(model.device) with torch.no_grad(): output_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=do_sample, attention_mask=attention_mask ) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) assistant_response = response.split("Assistant\n")[-1].strip() if tool_definition and "" in assistant_response: tool_call = assistant_response.split("")[1].split("")[0] assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response." return assistant_response def update_advanced_settings(show_advanced): return {"visible": show_advanced} with gr.Blocks() as demo: with gr.Row(): gr.Markdown(title) with gr.Row(): gr.Markdown(description) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(presentation1) with gr.Column(scale=1): with gr.Group(): gr.Markdown(joinus) with gr.Row(): with gr.Column(scale=2): system_prompt = gr.TextArea(label="📑Context", placeholder="add context here...", lines=5) user_input = gr.TextArea(label="🤷🏻‍♂️User Input", placeholder="Hi there my name is Tonic!", lines=2) advanced_checkbox = gr.Checkbox(label="🧪 Advanced Settings", value=False) with gr.Column(visible=False) as advanced_settings: max_length = gr.Slider(label="📏Max Length", minimum=12, maximum=1700, value=650, step=1) temperature = gr.Slider(label="🌡️Temperature", minimum=0.01, maximum=1.0, value=0.7, step=0.01) top_p = gr.Slider(label="⚛️Top-p (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.9, step=0.01) # do_sample = gr.Checkbox(label="Do Sample", value=True) use_pipeline = gr.Checkbox(label="Use Pipeline", value=False) use_tool = gr.Checkbox(label="Use Function Calling", value=False) with gr.Column(visible=False) as tool_options: tool_definition = gr.Code( label="Tool Definition (JSON)", value=customtool, lines=15, language="json" ) generate_button = gr.Button(value="🤖Mistral-NeMo-Minitron") with gr.Column(scale=2): chatbot = gr.Chatbot(label="🤖Mistral-NeMo-Minitron") def user(user_message, history): return "", history + [[user_message, None]] def bot(history, system_prompt, max_length, temperature, top_p, advanced_settings, use_pipeline, tool_definition): user_message = history[-1][0] bot_message = generate_response(user_message, history, system_prompt, max_length, temperature, top_p, advanced_checkbox, use_pipeline, tool_definition) history[-1][1] = bot_message return history generate_button.click( user, [user_input, chatbot], [user_input, chatbot], queue=False ).then( bot, [chatbot, system_prompt, max_length, temperature, top_p, advanced_checkbox, use_pipeline, tool_definition], chatbot ) advanced_checkbox.change( fn=update_advanced_settings, inputs=[advanced_checkbox], outputs=advanced_settings ) use_tool.change( fn=lambda x: gr.update(visible=x), inputs=[use_tool], outputs=[tool_options] ) if __name__ == "__main__": demo.queue() demo.launch()