Spaces:
Running
on
Zero
Running
on
Zero
File size: 56,572 Bytes
4299336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 |
# mypy: allow-untyped-defs
import warnings
from typing import Optional, Tuple
import torch
from torch import Tensor
from .linear import NonDynamicallyQuantizableLinear
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
from .module import Module
from .. import functional as F
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh',
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU',
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink',
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax']
[docs]class Threshold(Module):
r"""Thresholds each element of the input Tensor.
Threshold is defined as:
.. math::
y =
\begin{cases}
x, &\text{ if } x > \text{threshold} \\
\text{value}, &\text{ otherwise }
\end{cases}
Args:
threshold: The value to threshold at
value: The value to replace with
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
Examples::
>>> m = nn.Threshold(0.1, 20)
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['threshold', 'value', 'inplace']
threshold: float
value: float
inplace: bool
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None:
super().__init__()
self.threshold = threshold
self.value = value
self.inplace = inplace
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
def forward(self, input: Tensor) -> Tensor:
return F.threshold(input, self.threshold, self.value, self.inplace)
def extra_repr(self):
inplace_str = ', inplace=True' if self.inplace else ''
return f'threshold={self.threshold}, value={self.value}{inplace_str}'
[docs]class ReLU(Module):
r"""Applies the rectified linear unit function element-wise.
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/ReLU.png
Examples::
>>> m = nn.ReLU()
>>> input = torch.randn(2)
>>> output = m(input)
An implementation of CReLU - https://arxiv.org/abs/1603.05201
>>> m = nn.ReLU()
>>> input = torch.randn(2).unsqueeze(0)
>>> output = torch.cat((m(input), m(-input)))
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace: bool = False):
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.relu(input, inplace=self.inplace)
def extra_repr(self) -> str:
inplace_str = 'inplace=True' if self.inplace else ''
return inplace_str
[docs]class RReLU(Module):
r"""Applies the randomized leaky rectified linear unit function, element-wise.
Method described in the paper:
`Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_.
The function is defined as:
.. math::
\text{RReLU}(x) =
\begin{cases}
x & \text{if } x \geq 0 \\
ax & \text{ otherwise }
\end{cases}
where :math:`a` is randomly sampled from uniform distribution
:math:`\mathcal{U}(\text{lower}, \text{upper})` during training while during
evaluation :math:`a` is fixed with :math:`a = \frac{\text{lower} + \text{upper}}{2}`.
Args:
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/RReLU.png
Examples::
>>> m = nn.RReLU(0.1, 0.3)
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['lower', 'upper', 'inplace']
lower: float
upper: float
inplace: bool
def __init__(
self,
lower: float = 1. / 8,
upper: float = 1. / 3,
inplace: bool = False
):
super().__init__()
self.lower = lower
self.upper = upper
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
def extra_repr(self):
inplace_str = ', inplace=True' if self.inplace else ''
return f'lower={self.lower}, upper={self.upper}{inplace_str}'
[docs]class Hardtanh(Module):
r"""Applies the HardTanh function element-wise.
HardTanh is defined as:
.. math::
\text{HardTanh}(x) = \begin{cases}
\text{max\_val} & \text{ if } x > \text{ max\_val } \\
\text{min\_val} & \text{ if } x < \text{ min\_val } \\
x & \text{ otherwise } \\
\end{cases}
Args:
min_val: minimum value of the linear region range. Default: -1
max_val: maximum value of the linear region range. Default: 1
inplace: can optionally do the operation in-place. Default: ``False``
Keyword arguments :attr:`min_value` and :attr:`max_value`
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Hardtanh.png
Examples::
>>> m = nn.Hardtanh(-2, 2)
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['min_val', 'max_val', 'inplace']
min_val: float
max_val: float
inplace: bool
def __init__(
self,
min_val: float = -1.,
max_val: float = 1.,
inplace: bool = False,
min_value: Optional[float] = None,
max_value: Optional[float] = None
) -> None:
super().__init__()
if min_value is not None:
warnings.warn(
"keyword argument `min_value` is deprecated and rename to `min_val`",
FutureWarning,
stacklevel=2,
)
min_val = min_value
if max_value is not None:
warnings.warn(
"keyword argument `max_value` is deprecated and rename to `max_val`",
FutureWarning,
stacklevel=2,
)
max_val = max_value
self.min_val = min_val
self.max_val = max_val
self.inplace = inplace
assert self.max_val > self.min_val
def forward(self, input: Tensor) -> Tensor:
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
def extra_repr(self) -> str:
inplace_str = ', inplace=True' if self.inplace else ''
return f'min_val={self.min_val}, max_val={self.max_val}{inplace_str}'
[docs]class ReLU6(Hardtanh):
r"""Applies the ReLU6 function element-wise.
.. math::
\text{ReLU6}(x) = \min(\max(0,x), 6)
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/ReLU6.png
Examples::
>>> m = nn.ReLU6()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def __init__(self, inplace: bool = False):
super().__init__(0., 6., inplace)
def extra_repr(self) -> str:
inplace_str = 'inplace=True' if self.inplace else ''
return inplace_str
[docs]class Sigmoid(Module):
r"""Applies the Sigmoid function element-wise.
.. math::
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Sigmoid.png
Examples::
>>> m = nn.Sigmoid()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
return torch.sigmoid(input)
[docs]class Hardsigmoid(Module):
r"""Applies the Hardsigmoid function element-wise.
Hardsigmoid is defined as:
.. math::
\text{Hardsigmoid}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
1 & \text{if~} x \ge +3, \\
x / 6 + 1 / 2 & \text{otherwise}
\end{cases}
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Hardsigmoid.png
Examples::
>>> m = nn.Hardsigmoid()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace : bool = False) -> None:
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.hardsigmoid(input, self.inplace)
[docs]class Tanh(Module):
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.
Tanh is defined as:
.. math::
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Tanh.png
Examples::
>>> m = nn.Tanh()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
return torch.tanh(input)
[docs]class SiLU(Module):
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
The SiLU function is also known as the swish function.
.. math::
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
.. note::
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
where the SiLU was experimented with later.
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/SiLU.png
Examples::
>>> m = nn.SiLU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace: bool = False):
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.silu(input, inplace=self.inplace)
def extra_repr(self) -> str:
inplace_str = 'inplace=True' if self.inplace else ''
return inplace_str
[docs]class Mish(Module):
r"""Applies the Mish function, element-wise.
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
.. math::
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
.. note::
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Mish.png
Examples::
>>> m = nn.Mish()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace: bool = False):
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.mish(input, inplace=self.inplace)
def extra_repr(self) -> str:
inplace_str = 'inplace=True' if self.inplace else ''
return inplace_str
[docs]class Hardswish(Module):
r"""Applies the Hardswish function, element-wise.
Method described in the paper: `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
Hardswish is defined as:
.. math::
\text{Hardswish}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
x & \text{if~} x \ge +3, \\
x \cdot (x + 3) /6 & \text{otherwise}
\end{cases}
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Hardswish.png
Examples::
>>> m = nn.Hardswish()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace : bool = False) -> None:
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.hardswish(input, self.inplace)
[docs]class ELU(Module):
r"""Applies the Exponential Linear Unit (ELU) function, element-wise.
Method described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.
ELU is defined as:
.. math::
\text{ELU}(x) = \begin{cases}
x, & \text{ if } x > 0\\
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0
\end{cases}
Args:
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/ELU.png
Examples::
>>> m = nn.ELU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['alpha', 'inplace']
alpha: float
inplace: bool
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
super().__init__()
self.alpha = alpha
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.elu(input, self.alpha, self.inplace)
def extra_repr(self) -> str:
inplace_str = ', inplace=True' if self.inplace else ''
return f'alpha={self.alpha}{inplace_str}'
[docs]class CELU(Module):
r"""Applies the CELU function element-wise.
.. math::
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
Args:
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/CELU.png
Examples::
>>> m = nn.CELU()
>>> input = torch.randn(2)
>>> output = m(input)
.. _`Continuously Differentiable Exponential Linear Units`:
https://arxiv.org/abs/1704.07483
"""
__constants__ = ['alpha', 'inplace']
alpha: float
inplace: bool
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
super().__init__()
self.alpha = alpha
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.celu(input, self.alpha, self.inplace)
def extra_repr(self) -> str:
inplace_str = ', inplace=True' if self.inplace else ''
return f'alpha={self.alpha}{inplace_str}'
[docs]class SELU(Module):
r"""Applies the SELU function element-wise.
.. math::
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
with :math:`\alpha = 1.6732632423543772848170429916717` and
:math:`\text{scale} = 1.0507009873554804934193349852946`.
.. warning::
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
in order to get `Self-Normalizing Neural Networks`_.
See :func:`torch.nn.init.calculate_gain` for more information.
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
Args:
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/SELU.png
Examples::
>>> m = nn.SELU()
>>> input = torch.randn(2)
>>> output = m(input)
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
"""
__constants__ = ['inplace']
inplace: bool
def __init__(self, inplace: bool = False) -> None:
super().__init__()
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.selu(input, self.inplace)
def extra_repr(self) -> str:
inplace_str = 'inplace=True' if self.inplace else ''
return inplace_str
[docs]class GLU(Module):
r"""Applies the gated linear unit function.
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
of the input matrices and :math:`b` is the second half.
Args:
dim (int): the dimension on which to split the input. Default: -1
Shape:
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
dimensions
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
Examples::
>>> m = nn.GLU()
>>> input = torch.randn(4, 2)
>>> output = m(input)
"""
__constants__ = ['dim']
dim: int
def __init__(self, dim: int = -1) -> None:
super().__init__()
self.dim = dim
def forward(self, input: Tensor) -> Tensor:
return F.glu(input, self.dim)
def extra_repr(self) -> str:
return f'dim={self.dim}'
[docs]class GELU(Module):
r"""Applies the Gaussian Error Linear Units function.
.. math:: \text{GELU}(x) = x * \Phi(x)
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
When the approximate argument is 'tanh', Gelu is estimated with:
.. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
Args:
approximate (str, optional): the gelu approximation algorithm to use:
``'none'`` | ``'tanh'``. Default: ``'none'``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/GELU.png
Examples::
>>> m = nn.GELU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['approximate']
approximate: str
def __init__(self, approximate: str = 'none') -> None:
super().__init__()
self.approximate = approximate
def forward(self, input: Tensor) -> Tensor:
return F.gelu(input, approximate=self.approximate)
def extra_repr(self) -> str:
return f'approximate={repr(self.approximate)}'
[docs]class Hardshrink(Module):
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.
Hardshrink is defined as:
.. math::
\text{HardShrink}(x) =
\begin{cases}
x, & \text{ if } x > \lambda \\
x, & \text{ if } x < -\lambda \\
0, & \text{ otherwise }
\end{cases}
Args:
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Hardshrink.png
Examples::
>>> m = nn.Hardshrink()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['lambd']
lambd: float
def __init__(self, lambd: float = 0.5) -> None:
super().__init__()
self.lambd = lambd
def forward(self, input: Tensor) -> Tensor:
return F.hardshrink(input, self.lambd)
def extra_repr(self) -> str:
return f'{self.lambd}'
[docs]class LeakyReLU(Module):
r"""Applies the LeakyReLU function element-wise.
.. math::
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
or
.. math::
\text{LeakyReLU}(x) =
\begin{cases}
x, & \text{ if } x \geq 0 \\
\text{negative\_slope} \times x, & \text{ otherwise }
\end{cases}
Args:
negative_slope: Controls the angle of the negative slope (which is used for
negative input values). Default: 1e-2
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(*)` where `*` means, any number of additional
dimensions
- Output: :math:`(*)`, same shape as the input
.. image:: ../scripts/activation_images/LeakyReLU.png
Examples::
>>> m = nn.LeakyReLU(0.1)
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['inplace', 'negative_slope']
inplace: bool
negative_slope: float
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
super().__init__()
self.negative_slope = negative_slope
self.inplace = inplace
def forward(self, input: Tensor) -> Tensor:
return F.leaky_relu(input, self.negative_slope, self.inplace)
def extra_repr(self) -> str:
inplace_str = ', inplace=True' if self.inplace else ''
return f'negative_slope={self.negative_slope}{inplace_str}'
[docs]class LogSigmoid(Module):
r"""Applies the Logsigmoid function element-wise.
.. math::
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/LogSigmoid.png
Examples::
>>> m = nn.LogSigmoid()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
return F.logsigmoid(input)
[docs]class Softplus(Module):
r"""Applies the Softplus function element-wise.
.. math::
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
SoftPlus is a smooth approximation to the ReLU function and can be used
to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function
when :math:`input \times \beta > threshold`.
Args:
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
threshold: values above this revert to a linear function. Default: 20
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Softplus.png
Examples::
>>> m = nn.Softplus()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['beta', 'threshold']
beta: float
threshold: float
def __init__(self, beta: float = 1.0, threshold: float = 20.0) -> None:
super().__init__()
self.beta = beta
self.threshold = threshold
def forward(self, input: Tensor) -> Tensor:
return F.softplus(input, self.beta, self.threshold)
def extra_repr(self) -> str:
return f'beta={self.beta}, threshold={self.threshold}'
[docs]class Softshrink(Module):
r"""Applies the soft shrinkage function element-wise.
.. math::
\text{SoftShrinkage}(x) =
\begin{cases}
x - \lambda, & \text{ if } x > \lambda \\
x + \lambda, & \text{ if } x < -\lambda \\
0, & \text{ otherwise }
\end{cases}
Args:
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Softshrink.png
Examples::
>>> m = nn.Softshrink()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['lambd']
lambd: float
def __init__(self, lambd: float = 0.5) -> None:
super().__init__()
self.lambd = lambd
def forward(self, input: Tensor) -> Tensor:
return F.softshrink(input, self.lambd)
def extra_repr(self) -> str:
return str(self.lambd)
def _check_arg_device(x: Optional[torch.Tensor]) -> bool:
if x is not None:
return x.device.type in ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
return True
def _arg_requires_grad(x: Optional[torch.Tensor]) -> bool:
if x is not None:
return x.requires_grad
return False
def _is_make_fx_tracing():
if not torch.jit.is_scripting():
torch_dispatch_mode_stack = torch.utils._python_dispatch._get_current_dispatch_mode_stack()
return any(type(x) == torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode for x in torch_dispatch_mode_stack)
else:
return False
[docs]class MultiheadAttention(Module):
r"""Allows the model to jointly attend to information from different representation subspaces.
Method described in the paper:
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Multi-Head Attention is defined as:
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
``nn.MultiHeadAttention`` will use the optimized implementations of
``scaled_dot_product_attention()`` when possible.
In addition to support for the new ``scaled_dot_product_attention()``
function, for speeding up Inference, MHA will use
fastpath inference with support for Nested Tensors, iff:
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor).
- inputs are batched (3D) with ``batch_first==True``
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
- training is disabled (using ``.eval()``)
- ``add_bias_kv`` is ``False``
- ``add_zero_attn`` is ``False``
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
nor ``attn_mask`` is passed
- autocast is disabled
If the optimized inference fastpath implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
``query``/``key``/``value`` to represent padding more efficiently than using a
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
will be returned, and an additional speedup proportional to the fraction of the input
that is padding can be expected.
Args:
embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
Default: ``False``.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Examples::
>>> # xdoctest: +SKIP
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
https://arxiv.org/abs/2205.14135
"""
__constants__ = ['batch_first']
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
if embed_dim <= 0 or num_heads <= 0:
raise ValueError(
f"embed_dim and num_heads must be greater than 0,"
f" got embed_dim={embed_dim} and num_heads={num_heads} instead"
)
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if not self._qkv_same_embed_dim:
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super().__setstate__(state)
[docs] def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
r"""Compute attention outputs using query, key, and value embeddings.
Supports optional parameters for padding, masks and attention weights.
Args:
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
Queries are compared against key-value pairs to produce the output.
See "Attention Is All You Need" for more details.
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
See "Attention Is All You Need" for more details.
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
See "Attention Is All You Need" for more details.
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
Binary and float masks are supported.
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``
and achieve the best performance for MHA.
Default: ``True``.
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
the attention weight.
If both attn_mask and key_padding_mask are supplied, their types should match.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
is_causal: If specified, applies a causal mask as attention mask.
Default: ``False``.
Warning:
``is_causal`` provides a hint that ``attn_mask`` is the
causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
Outputs:
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
embedding dimension ``embed_dim``.
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
.. note::
`batch_first` argument is ignored for unbatched inputs.
"""
why_not_fast_path = ''
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
why_not_fast_path = "floating-point masks are not supported for fast path."
is_batched = query.dim() == 3
key_padding_mask = F._canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=F._none_or_dtype(attn_mask),
other_name="attn_mask",
target_type=query.dtype
)
attn_mask = F._canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
if not is_fastpath_enabled:
why_not_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
elif not is_batched:
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
elif query is not key or key is not value:
# When lifting this restriction, don't forget to either
# enforce that the dtypes all match or test cases where
# they don't!
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
elif self.in_proj_weight is None:
why_not_fast_path = "in_proj_weight was None"
elif query.dtype != self.in_proj_weight.dtype:
# this case will fail anyway, but at least they'll get a useful error message.
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
elif self.training:
why_not_fast_path = "training is enabled"
elif (self.num_heads % 2) != 0:
why_not_fast_path = "self.num_heads is not even"
elif not self.batch_first:
why_not_fast_path = "batch_first was not True"
elif self.bias_k is not None:
why_not_fast_path = "self.bias_k was not None"
elif self.bias_v is not None:
why_not_fast_path = "self.bias_v was not None"
elif self.add_zero_attn:
why_not_fast_path = "add_zero_attn was enabled"
elif not self._qkv_same_embed_dim:
why_not_fast_path = "_qkv_same_embed_dim was not True"
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
is not supported with NestedTensor input"
elif torch.is_autocast_enabled():
why_not_fast_path = "autocast is enabled"
if not why_not_fast_path:
tensor_args = (
query,
key,
value,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
)
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
if torch.overrides.has_torch_function(tensor_args):
why_not_fast_path = "some Tensor argument has_torch_function"
elif _is_make_fx_tracing():
why_not_fast_path = "we are running make_fx tracing"
elif not all(_check_arg_device(x) for x in tensor_args):
why_not_fast_path = ("some Tensor argument's device is neither one of "
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
why_not_fast_path = ("grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad")
if not why_not_fast_path:
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
if self.in_proj_bias is not None and self.in_proj_weight is not None:
return torch._native_multi_head_attention(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
merged_mask,
need_weights,
average_attn_weights,
mask_type)
any_nested = query.is_nested or key.is_nested or value.is_nested
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
f"The fast path was not hit because {why_not_fast_path}")
if self.batch_first and is_batched:
# make sure that the transpose op does not affect the "is" property
if key is value:
if query is key:
query = key = value = query.transpose(1, 0)
else:
query, key = (x.transpose(1, 0) for x in (query, key))
value = key
else:
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
average_attn_weights=average_attn_weights,
is_causal=is_causal)
else:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
average_attn_weights=average_attn_weights,
is_causal=is_causal)
if self.batch_first and is_batched:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights
[docs] def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor],
query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]:
r"""Determine mask type and combine masks if necessary.
If only one mask is provided, that mask
and the corresponding mask type will be returned. If both masks are provided, they will be both
expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or``
and mask type 2 will be returned
Args:
attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0
key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1
query: query embeddings of shape ``(batch_size, seq_len, embed_dim)``
Returns:
merged_mask: merged mask
mask_type: merged mask type (0, 1, or 2)
"""
mask_type: Optional[int] = None
merged_mask: Optional[Tensor] = None
if key_padding_mask is not None:
mask_type = 1
merged_mask = key_padding_mask
if attn_mask is not None:
# In this branch query can't be a nested tensor, so it has a shape
batch_size, seq_len, _ = query.shape
mask_type = 2
# Always expands attn_mask to 4D
if attn_mask.dim() == 3:
attn_mask_expanded = attn_mask.view(batch_size, -1, seq_len, seq_len)
else: # attn_mask.dim() == 2:
attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1)
merged_mask = attn_mask_expanded
if key_padding_mask is not None:
key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1)
merged_mask = attn_mask_expanded + key_padding_mask_expanded
# no attn_mask and no key_padding_mask, returns None, None
return merged_mask, mask_type
[docs]class PReLU(Module):
r"""Applies the element-wise PReLU function.
.. math::
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
or
.. math::
\text{PReLU}(x) =
\begin{cases}
x, & \text{ if } x \ge 0 \\
ax, & \text{ otherwise }
\end{cases}
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
a separate :math:`a` is used for each input channel.
.. note::
weight decay should not be used when learning :math:`a` for good performance.
.. note::
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
no channel dim and the number of channels = 1.
Args:
num_parameters (int): number of :math:`a` to learn.
Although it takes an int as input, there is only two values are legitimate:
1, or the number of channels at input. Default: 1
init (float): the initial value of :math:`a`. Default: 0.25
Shape:
- Input: :math:`( *)` where `*` means, any number of additional
dimensions.
- Output: :math:`(*)`, same shape as the input.
Attributes:
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
.. image:: ../scripts/activation_images/PReLU.png
Examples::
>>> m = nn.PReLU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
__constants__ = ['num_parameters']
num_parameters: int
def __init__(self, num_parameters: int = 1, init: float = 0.25,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
self.num_parameters = num_parameters
super().__init__()
self.init = init
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs))
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.constant_(self.weight, self.init)
def forward(self, input: Tensor) -> Tensor:
return F.prelu(input, self.weight)
def extra_repr(self) -> str:
return f'num_parameters={self.num_parameters}'
[docs]class Softsign(Module):
r"""Applies the element-wise Softsign function.
.. math::
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Softsign.png
Examples::
>>> m = nn.Softsign()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
return F.softsign(input)
[docs]class Tanhshrink(Module):
r"""Applies the element-wise Tanhshrink function.
.. math::
\text{Tanhshrink}(x) = x - \tanh(x)
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
.. image:: ../scripts/activation_images/Tanhshrink.png
Examples::
>>> m = nn.Tanhshrink()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
return F.tanhshrink(input)
[docs]class Softmin(Module):
r"""Applies the Softmin function to an n-dimensional input Tensor.
Rescales them so that the elements of the n-dimensional output Tensor
lie in the range `[0, 1]` and sum to 1.
Softmin is defined as:
.. math::
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
Shape:
- Input: :math:`(*)` where `*` means, any number of additional
dimensions
- Output: :math:`(*)`, same shape as the input
Args:
dim (int): A dimension along which Softmin will be computed (so every slice
along dim will sum to 1).
Returns:
a Tensor of the same dimension and shape as the input, with
values in the range [0, 1]
Examples::
>>> m = nn.Softmin(dim=1)
>>> input = torch.randn(2, 3)
>>> output = m(input)
"""
__constants__ = ['dim']
dim: Optional[int]
def __init__(self, dim: Optional[int] = None) -> None:
super().__init__()
self.dim = dim
def __setstate__(self, state):
super().__setstate__(state)
if not hasattr(self, 'dim'):
self.dim = None
def forward(self, input: Tensor) -> Tensor:
return F.softmin(input, self.dim, _stacklevel=5)
def extra_repr(self):
return f'dim={self.dim}'
[docs]class Softmax(Module):
r"""Applies the Softmax function to an n-dimensional input Tensor.
Rescales them so that the elements of the n-dimensional output Tensor
lie in the range [0,1] and sum to 1.
Softmax is defined as:
.. math::
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
When the input Tensor is a sparse tensor then the unspecified
values are treated as ``-inf``.
Shape:
- Input: :math:`(*)` where `*` means, any number of additional
dimensions
- Output: :math:`(*)`, same shape as the input
Returns:
a Tensor of the same dimension and shape as the input with
values in the range [0, 1]
Args:
dim (int): A dimension along which Softmax will be computed (so every slice
along dim will sum to 1).
.. note::
This module doesn't work directly with NLLLoss,
which expects the Log to be computed between the Softmax and itself.
Use `LogSoftmax` instead (it's faster and has better numerical properties).
Examples::
>>> m = nn.Softmax(dim=1)
>>> input = torch.randn(2, 3)
>>> output = m(input)
"""
__constants__ = ['dim']
dim: Optional[int]
def __init__(self, dim: Optional[int] = None) -> None:
super().__init__()
self.dim = dim
def __setstate__(self, state):
super().__setstate__(state)
if not hasattr(self, 'dim'):
self.dim = None
def forward(self, input: Tensor) -> Tensor:
return F.softmax(input, self.dim, _stacklevel=5)
def extra_repr(self) -> str:
return f'dim={self.dim}'
[docs]class Softmax2d(Module):
r"""Applies SoftMax over features to each spatial location.
When given an image of ``Channels x Height x Width``, it will
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
Shape:
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
Returns:
a Tensor of the same dimension and shape as the input with
values in the range [0, 1]
Examples::
>>> m = nn.Softmax2d()
>>> # you softmax over the 2nd dimension
>>> input = torch.randn(2, 3, 12, 13)
>>> output = m(input)
"""
def forward(self, input: Tensor) -> Tensor:
if input.dim() not in (3, 4):
raise ValueError(
f"Softmax2d: expected input to be 3D or 4D, got {input.dim()}D instead"
)
return F.softmax(input, -3, _stacklevel=5)
[docs]class LogSoftmax(Module):
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor.
The LogSoftmax formulation can be simplified as:
.. math::
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
Shape:
- Input: :math:`(*)` where `*` means, any number of additional
dimensions
- Output: :math:`(*)`, same shape as the input
Args:
dim (int): A dimension along which LogSoftmax will be computed.
Returns:
a Tensor of the same dimension and shape as the input with
values in the range [-inf, 0)
Examples::
>>> m = nn.LogSoftmax(dim=1)
>>> input = torch.randn(2, 3)
>>> output = m(input)
"""
__constants__ = ['dim']
dim: Optional[int]
def __init__(self, dim: Optional[int] = None) -> None:
super().__init__()
self.dim = dim
def __setstate__(self, state):
super().__setstate__(state)
if not hasattr(self, 'dim'):
self.dim = None
def forward(self, input: Tensor) -> Tensor:
return F.log_softmax(input, self.dim, _stacklevel=5)
def extra_repr(self):
return f'dim={self.dim}' |