Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,638 Bytes
651f3a2 6d32964 651f3a2 6d32964 651f3a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
title = """# ππ»ββοΈ Welcome to Tonic's Minitron-8B-Base"""
# Load the tokenizer and model
model_path = "nvidia/Minitron-8B-Base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
device='cuda'
dtype=torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
# Define the prompt format
def create_prompt(instruction):
PROMPT = '''You are TronTonic an AI created by Tonic-AI. Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
return PROMPT.format(instruction=instruction)
def respond(message, history, system_message, max_tokens, temperature, top_p):
prompt = create_prompt(message)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
demo = gr.ChatInterface(
gr.markdown(title),
# gr.markdown(description),
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
],
)
if __name__ == "__main__":
demo.launch() |