Muennighoff's picture
v0001
78db81b
raw
history blame
3.36 kB
import gradio as gr
import requests
import pandas as pd
from huggingface_hub.hf_api import SpaceInfo
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
path = f"https://huggingface.co/api/spaces"
#api = HfApi()
#models = api.list_models(filter="mteb")
#readme_path = hf_hub_download(models[0].modelId, filename="README.md")
#meta = metadata_load(readme_path)
#list(filter(lambda x: x["task"]["type"] == "Retrieval", meta["model-index"][0]["results"]))
def get_blocks_party_spaces():
r = requests.get(path)
d = r.json()
spaces = [SpaceInfo(**x) for x in d]
blocks_spaces = {}
for i in range(0,len(spaces)):
if spaces[i].id.split('/')[0] == 'Gradio-Blocks' and hasattr(spaces[i], 'likes') and spaces[i].id != 'Gradio-Blocks/Leaderboard' and spaces[i].id != 'Gradio-Blocks/README':
blocks_spaces[spaces[i].id]=spaces[i].likes
df = pd.DataFrame(
[{"Spaces_Name": Spaces, "likes": likes} for Spaces,likes in blocks_spaces.items()])
df = df.sort_values(by=['likes'],ascending=False)
return df
def get_clustering(task="Clustering", metric="v_measure"):
api = HfApi()
models = api.list_models(filter="mteb")
df_list = []
for model in models:
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
out = list(
map(
lambda x: {x["dataset"]["name"]: list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"]},
filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"])
)
)
out = {k: v for d in out for k, v in d.items()}
out["Model"] = model.modelId
df_list.append(out)
df = pd.DataFrame(df_list)
# Put Model in the beginning & sort the others
df = df[[df.columns[-1]] + sorted(df.columns[:-1])]
return df
block = gr.Blocks()
with block:
gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""")
with gr.Tabs():
with gr.TabItem("Blocks Party Leaderboard"):
with gr.Row():
data = gr.components.Dataframe(type="pandas")
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
with gr.TabItem("Clustering"):
with gr.Row():
gr.Markdown("""Leaderboard for Clustering""")
with gr.Row():
data = gr.components.Dataframe(type="pandas")
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(get_clustering, inputs=None, outputs=data)
with gr.TabItem("Blocks Party Leaderboard2"):
with gr.Row():
data = gr.components.Dataframe(type="pandas")
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
# running the function on page load in addition to when the button is clicked
block.load(get_blocks_party_spaces, inputs=None, outputs=data)
block.launch()