Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install torch==1.8.0+cpu torchvision==0.9.0+cpu -f https://download.pytorch.org/whl/torch_stable.html') | |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.8/index.html') | |
import gradio as gr | |
import numpy as np | |
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
model = LayoutLMv2ForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv2-finetuned-sroie_mod") | |
# load image example | |
dataset = load_dataset("darentang/generated", split="test") | |
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png") | |
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png") | |
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png") | |
# define id2label, label2color | |
labels = dataset.features['ner_tags'].feature.names | |
id2label = {v: k for v, k in enumerate(labels)} | |
label2color = {'b-abn': "blue", | |
'b-biller': "blue", | |
'b-biller_address': "black", | |
'b-biller_post_code': "green", | |
'b-due_date': "orange", | |
'b-gst': 'red', | |
'b-invoice_date': 'red', | |
'b-invoice_number': 'violet', | |
'b-subtotal': 'green', | |
'b-total': 'green', | |
'i-biller_address': 'blue', | |
'o': 'violet'} | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
return label | |
def process_image(image): | |
width, height = image.size | |
# encode | |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
offset_mapping = encoding.pop('offset_mapping') | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction).lower() | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
return image | |
title = "Invoice Information extraction using LayoutLMv2 model" | |
description = "Invoice Information Extraction - We use Microsoft's LayoutLMv2 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds." | |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding.” 2022. <a href='https://arxiv.org/abs/2012.14740'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv2/FUNSD'>LayoutLMv2 training and inference</a>" | |
examples =[['example1.png'],['example2.png'],['example3.png']] | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="annotated image"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
analytics_enabled = True, enable_queue=True) | |
iface.launch(inline=False,debug=False) |