File size: 4,155 Bytes
47601f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42bce9a
 
 
47601f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os

os.system('pip install torch==1.8.0+cpu torchvision==0.9.0+cpu -f https://download.pytorch.org/whl/torch_stable.html')
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.8/index.html')


import gradio as gr
import numpy as np
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont

processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
model = LayoutLMv2ForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv2-finetuned-sroie_mod")

# load image example
dataset = load_dataset("darentang/generated", split="test")
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
# define id2label, label2color
labels = dataset.features['ner_tags'].feature.names
id2label = {v: k for v, k in enumerate(labels)}
label2color = {'b-abn': "blue",
 'b-biller': "blue",
 'b-biller_address': "black",
 'b-biller_post_code': "green",
 'b-due_date': "orange",
 'b-gst': 'red',
 'b-invoice_date': 'red',
 'b-invoice_number': 'violet',
 'b-subtotal': 'green',
 'b-total': 'green',
 'i-biller_address': 'blue',
 'o': 'violet'}

def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]

def iob_to_label(label):
    return label

def process_image(image):
    width, height = image.size

    # encode
    encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    # draw predictions over the image
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()
    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction).lower()
        draw.rectangle(box, outline=label2color[predicted_label])
        draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
    
    return image


title = "Invoice Information extraction using LayoutLMv2 model"
description = "Invoice Information Extraction - We use Microsoft's LayoutLMv2 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."

article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding.” 2022. <a href='https://arxiv.org/abs/2012.14740'>Paper Link</a><br>[2]  <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv2/FUNSD'>LayoutLMv2 training and inference</a>" 

examples =[['example1.png'],['example2.png'],['example3.png']]


css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=process_image, 
                     inputs=gr.inputs.Image(type="pil"), 
                     outputs=gr.outputs.Image(type="pil", label="annotated image"),
                     title=title,
                     description=description,
                     article=article,
                     examples=examples,
                     css=css,
                     analytics_enabled = True, enable_queue=True)
iface.launch(inline=False, share=True, debug=False)