Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,702 Bytes
579c64b 1a6c643 579c64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import torch
import numpy as np
import random
import os
from diffusers.utils import load_image
from diffusers import EulerAncestralDiscreteScheduler
from huggingface_hub import hf_hub_download
import spaces
import gradio as gr
from pipeline import PhotoMakerStableDiffusionXLPipeline
from style_template import styles
# Download civitai models
civitai_model_path = "./civitai_models"
os.makedirs(civitai_model_path, exist_ok=True)
base_model_name = "sdxlUnstableDiffusers_v11.safetensors"
base_model_path = os.path.join(civitai_model_path, base_model_name)
if not os.path.exists(base_model_path):
base_model_path = hf_hub_download(repo_id="Paper99/sdxlUnstableDiffusers_v11", filename="sdxlUnstableDiffusers_v11.safetensors", repo_type="model")
lora_model_name = "xl_more_art-full.safetensors"
lora_path = os.path.join(civitai_model_path, lora_model_name)
if not os.path.exists(lora_path):
os.system(f'wget https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor -O {lora_path}')
# global variable
device = "cuda"
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
# download PhotoMaker checkpoint to cache
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
pipe = PhotoMakerStableDiffusionXLPipeline.from_single_file(
base_model_path,
torch_dtype=torch.bfloat16,
original_config_file=None,
).to(device)
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img"
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=os.path.basename(lora_path), adapter_name="xl_more_art-full")
pipe.set_adapters(["photomaker", "xl_more_art-full"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
@spaces.GPU(enable_queue=True)
def generate_image(upload_images, prompt, negative_prompt, style_name, num_steps, style_strength_ratio, num_outputs, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# check the trigger word
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
input_ids = pipe.tokenizer.encode(prompt)
if image_token_id not in input_ids:
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2️⃣")
if input_ids.count(image_token_id) > 1:
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
if upload_images is None:
raise gr.Error(f"Cannot find any input face image! Please refer to step 1️⃣")
input_id_images = []
for img in upload_images:
input_id_images.append(load_image(img))
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(start_merge_step)
images = pipe(
prompt=prompt,
input_id_images=input_id_images,
negative_prompt=negative_prompt,
num_images_per_prompt=num_outputs,
num_inference_steps=num_steps,
start_merge_step=start_merge_step,
generator=generator,
guidance_scale=guidance_scale,
).images
return images, gr.update(visible=True)
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def upload_example_to_gallery(images, prompt, style, negative_prompt):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def remove_tips():
return gr.update(visible=False)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + ' ' + negative
def get_image_path_list(folder_name):
image_basename_list = os.listdir(folder_name)
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
return image_path_list
def get_example():
case = [
[
get_image_path_list('./examples/scarletthead_woman'),
"instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
[
get_image_path_list('./examples/newton_man'),
"sci-fi, closeup portrait photo of a man img wearing the sunglasses in Iron man suit, face, slim body, high quality, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
]
return case
### Description and style
logo = r"""
<center><img src='https://photo-maker.github.io/assets/logo.png' alt='PhotoMaker logo' style="width:80px; margin-bottom:10px"></center>
"""
title = r"""
<h1 align="center">PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</h1>
<h3 align="center">-- Stylization version --</h3>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'><b>PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</b></a>.<br>
<br>
For photo-realistic generation, you could use our other gradio demo [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker).
<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Upload images of someone you want to customize. One image is ok, but more is better. Although we do not perform face detection, the face in the uploaded image should <b>occupy the majority of the image</b>.<br>
2️⃣ Enter a text prompt, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ Click the <b>Submit</b> button to start customizing.
"""
article = r"""
If PhotoMaker is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{li2023photomaker,
title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
booktitle={arXiv preprint arxiv:2312.04461},
year={2023}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details.
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
tips = r"""
### Usage tips of PhotoMaker
1. Upload more photos of the person to be customized to **improve ID fidelty**. If the input is Asian face(s), maybe consider adding 'asian' before the class word, e.g., `asian woman img`
2. When stylizing, does the generated face look too realistic? Adjust the **Style strength** to 30-50, the larger the number, the less ID fidelty, but the stylization ability will be better.
3. If you want to generate realistic photos, you could try switching to our other gradio application [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker).
4. For **faster** speed, reduce the number of generated images and sampling steps. However, please note that reducing the sampling steps may compromise the ID fidelity.
"""
# 3. Don't make the prompt too long, as we will trim it if it exceeds 77 tokens. But we will fix it in the future.
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
# gr.DuplicateButton(
# value="Duplicate Space for private use ",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag (Select) 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman img' instead of 'A photo of a man/woman'",
placeholder="A photo of a [man/woman img]...")
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
submit = gr.Button("Submit")
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=20,
maximum=100,
step=1,
value=50,
)
style_strength_ratio = gr.Slider(
label="Style strength (%)",
minimum=15,
maximum=50,
step=1,
value=20,
)
num_outputs = gr.Slider(
label="Number of output images",
minimum=1,
maximum=4,
step=1,
value=4,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
usage_tips = gr.Markdown(label="Usage tips of PhotoMaker", value=tips ,visible=False)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[files, prompt, negative_prompt, style, num_steps, style_strength_ratio, num_outputs, guidance_scale, seed],
outputs=[gallery, usage_tips]
)
gr.Examples(
examples=get_example(),
inputs=[files, prompt, style, negative_prompt],
run_on_click=True,
fn=upload_example_to_gallery,
outputs=[uploaded_files, clear_button, files],
)
gr.Markdown(article)
demo.launch() |