import os import imageio import importlib from omegaconf import OmegaConf from typing import Union from safetensors import safe_open from tqdm import tqdm import numpy as np import torch import torchvision import torch.distributed as dist from scipy.interpolate import PchipInterpolator from einops import rearrange from utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint from utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora from modules.flow_controlnet import FlowControlNetModel from modules.image_controlnet import ImageControlNetModel def zero_rank_print(s): if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=2, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps, loop=0) # DDIM Inversion @torch.no_grad() def init_prompt(prompt, pipeline): uncond_input = pipeline.tokenizer( [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt" ) uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] text_input = pipeline.tokenizer( [prompt], padding="max_length", max_length=pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] context = torch.cat([uncond_embeddings, text_embeddings]) return context def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): timestep, next_timestep = min( timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] beta_prod_t = 1 - alpha_prod_t next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction return next_sample def get_noise_pred_single(latents, t, context, unet): noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] return noise_pred @torch.no_grad() def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): context = init_prompt(prompt, pipeline) uncond_embeddings, cond_embeddings = context.chunk(2) all_latent = [latent] latent = latent.clone().detach() for i in tqdm(range(num_inv_steps)): t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) latent = next_step(noise_pred, t, latent, ddim_scheduler) all_latent.append(latent) return all_latent @torch.no_grad() def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) return ddim_latents def load_weights( animation_pipeline, # motion module motion_module_path = "", motion_module_lora_configs = [], # domain adapter adapter_lora_path = "", adapter_lora_scale = 1.0, # image layers dreambooth_model_path = "", lora_model_path = "", lora_alpha = 0.8, ): # motion module unet_state_dict = {} if motion_module_path != "": print(f"load motion module from {motion_module_path}") motion_module_state_dict = torch.load(motion_module_path, map_location="cpu") motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name}) unet_state_dict.pop("animatediff_config", "") missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False) assert len(unexpected) == 0 del unet_state_dict # base model if dreambooth_model_path != "": print(f"load dreambooth model from {dreambooth_model_path}") if dreambooth_model_path.endswith(".safetensors"): dreambooth_state_dict = {} with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f: for key in f.keys(): dreambooth_state_dict[key] = f.get_tensor(key) elif dreambooth_model_path.endswith(".ckpt"): dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu") # 1. vae converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config) for key in list(converted_vae_checkpoint.keys()): if 'mid_block' in key: if 'key' in key: new_key = key.replace('key', 'to_k') elif 'query' in key: new_key = key.replace('query', 'to_q') elif 'value' in key: new_key = key.replace('value', 'to_v') elif 'proj_attn' in key: new_key = key.replace('proj_attn', 'to_out.0') else: new_key=False if new_key: converted_vae_checkpoint[new_key] = converted_vae_checkpoint[key] del converted_vae_checkpoint[key] m, u = animation_pipeline.vae.load_state_dict(converted_vae_checkpoint, strict=False) print(f"dreambooth vae: {u}") # 2. unet converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config) m,u = animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) # 3. text_model animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) del dreambooth_state_dict # lora layers if lora_model_path != "": print(f"load lora model from {lora_model_path}") assert lora_model_path.endswith(".safetensors") lora_state_dict = {} with safe_open(lora_model_path, framework="pt", device="cpu") as f: for key in f.keys(): lora_state_dict[key] = f.get_tensor(key) animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha) del lora_state_dict # domain adapter lora if adapter_lora_path != "": print(f"load domain lora from {adapter_lora_path}") domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu") domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict domain_lora_state_dict.pop("animatediff_config", "") animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale) # motion module lora for motion_module_lora_config in motion_module_lora_configs: path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"] print(f"load motion LoRA from {path}") motion_lora_state_dict = torch.load(path, map_location="cpu") motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict motion_lora_state_dict.pop("animatediff_config", "") animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha) return animation_pipeline def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def load_checkpoint(model_file, model): if not os.path.isfile(model_file): raise RuntimeError(f"{model_file} does not exist") state_dict = torch.load(model_file, map_location="cpu") global_step = state_dict['global_step'] if "global_step" in state_dict else 0 new_state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict new_state_dict = {k.replace('module.', '') : v for k, v in new_state_dict.items()} m, u = model.load_state_dict(new_state_dict, strict=False) return model, global_step, m, u, new_state_dict def load_model(model, model_path): if model_path != "": print(f"init model from checkpoint: {model_path}") model_ckpt = torch.load(model_path, map_location="cpu") if "global_step" in model_ckpt: print(f"global_step: {model_ckpt['global_step']}") state_dict = model_ckpt["state_dict"] if "state_dict" in model_ckpt else model_ckpt m, u = model.load_state_dict(state_dict, strict=False) print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") assert len(u) == 0 def interpolate_trajectory(points, n_points): x = [point[0] for point in points] y = [point[1] for point in points] t = np.linspace(0, 1, len(points)) fx = PchipInterpolator(t, x) fy = PchipInterpolator(t, y) new_t = np.linspace(0, 1, n_points) new_x = fx(new_t) new_y = fy(new_t) new_points = list(zip(new_x, new_y)) return new_points def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): """Generate a bivariate isotropic or anisotropic Gaussian kernel. In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None isotropic (bool): Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel def mesh_grid(kernel_size): """Generate the mesh grid, centering at zero. Args: kernel_size (int): Returns: xy (ndarray): with the shape (kernel_size, kernel_size, 2) xx (ndarray): with the shape (kernel_size, kernel_size) yy (ndarray): with the shape (kernel_size, kernel_size) """ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) xx, yy = np.meshgrid(ax, ax) xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, 1))).reshape(kernel_size, kernel_size, 2) return xy, xx, yy def pdf2(sigma_matrix, grid): """Calculate PDF of the bivariate Gaussian distribution. Args: sigma_matrix (ndarray): with the shape (2, 2) grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: kernel (ndarrray): un-normalized kernel. """ inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) return kernel def sigma_matrix2(sig_x, sig_y, theta): """Calculate the rotated sigma matrix (two dimensional matrix). Args: sig_x (float): sig_y (float): theta (float): Radian measurement. Returns: ndarray: Rotated sigma matrix. """ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) def create_image_controlnet(controlnet_config, unet, controlnet_path=""): # load controlnet model controlnet = None unet.config.num_attention_heads = 8 unet.config.projection_class_embeddings_input_dim = None controlnet_config = OmegaConf.load(controlnet_config) controlnet = ImageControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})) if controlnet_path != "": print(f"loading controlnet checkpoint from {controlnet_path} ...") controlnet_state_dict = torch.load(controlnet_path, map_location="cuda") if "global_step" in controlnet_state_dict: print(f"global_step: {controlnet_state_dict['global_step']}") controlnet_state_dict = controlnet_state_dict["state_dict"] if "state_dict" in controlnet_state_dict else controlnet_state_dict controlnet_state_dict.pop("animatediff_config", "") controlnet.load_state_dict(controlnet_state_dict) return controlnet def create_flow_controlnet(controlnet_config, unet, controlnet_path=""): # load controlnet model controlnet = None unet.config.num_attention_heads = 8 unet.config.projection_class_embeddings_input_dim = None controlnet_config = OmegaConf.load(controlnet_config) controlnet = FlowControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})) if controlnet_path != "": print(f"loading controlnet checkpoint from {controlnet_path} ...") controlnet_state_dict = torch.load(controlnet_path, map_location="cuda") controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict controlnet_state_dict.pop("animatediff_config", "") controlnet.load_state_dict(controlnet_state_dict) return controlnet