Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,982 Bytes
9e4009f d57f098 9e4009f d57f098 9e4009f b29b979 9e4009f b29b979 9e4009f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 |
"""
Defines helper methods useful for loading and caching Interface examples.
"""
from __future__ import annotations
import ast
import csv
import inspect
import os
import shutil
import subprocess
import tempfile
import warnings
from functools import partial
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional
import matplotlib.pyplot as plt
import numpy as np
import PIL
import PIL.Image
from gradio_client import utils as client_utils
from gradio_client.documentation import document, set_documentation_group
from matplotlib import animation
from gradio import components, oauth, processing_utils, routes, utils, wasm_utils
from gradio.context import Context, LocalContext
from gradio.data_classes import GradioModel, GradioRootModel
from gradio.events import EventData
from gradio.exceptions import Error
from gradio.flagging import CSVLogger
if TYPE_CHECKING: # Only import for type checking (to avoid circular imports).
from gradio.components import Component
CACHED_FOLDER = "gradio_cached_examples"
LOG_FILE = "log.csv"
set_documentation_group("helpers")
def create_examples(
examples: list[Any] | list[list[Any]] | str,
inputs: Component | list[Component],
outputs: Component | list[Component] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = None,
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
api_name: str | Literal[False] = "load_example",
batch: bool = False,
):
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
examples_obj = Examples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=fn,
cache_examples=cache_examples,
examples_per_page=examples_per_page,
_api_mode=_api_mode,
label=label,
elem_id=elem_id,
run_on_click=run_on_click,
preprocess=preprocess,
postprocess=postprocess,
api_name=api_name,
batch=batch,
_initiated_directly=False,
)
examples_obj.create()
return examples_obj
@document()
class Examples:
"""
This class is a wrapper over the Dataset component and can be used to create Examples
for Blocks / Interfaces. Populates the Dataset component with examples and
assigns event listener so that clicking on an example populates the input/output
components. Optionally handles example caching for fast inference.
Demos: blocks_inputs, fake_gan
Guides: more-on-examples-and-flagging, using-hugging-face-integrations, image-classification-in-pytorch, image-classification-in-tensorflow, image-classification-with-vision-transformers, create-your-own-friends-with-a-gan
"""
def __init__(
self,
examples: list[Any] | list[list[Any]] | str,
inputs: Component | list[Component],
outputs: Component | list[Component] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = "Examples",
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
api_name: str | Literal[False] = "load_example",
batch: bool = False,
_initiated_directly: bool = True,
):
"""
Parameters:
examples: example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs.
inputs: the component or list of components corresponding to the examples
outputs: optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache_examples` is True.
fn: optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache_examples` is True.
cache_examples: if True, caches examples for fast runtime. If True, then `fn` and `outputs` must be provided. If `fn` is a generator function, then the last yielded value will be used as the output.
examples_per_page: how many examples to show per page.
label: the label to use for the examples component (by default, "Examples")
elem_id: an optional string that is assigned as the id of this component in the HTML DOM.
run_on_click: if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True.
preprocess: if True, preprocesses the example input before running the prediction function and caching the output. Only applies if `cache_examples` is True.
postprocess: if True, postprocesses the example output after running the prediction function and before caching. Only applies if `cache_examples` is True.
api_name: Defines how the event associated with clicking on the examples appears in the API docs. Can be a string or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use the example function.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True.
"""
if _initiated_directly:
warnings.warn(
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
)
if cache_examples and (fn is None or outputs is None):
raise ValueError("If caching examples, `fn` and `outputs` must be provided")
if not isinstance(inputs, list):
inputs = [inputs]
if outputs and not isinstance(outputs, list):
outputs = [outputs]
working_directory = Path().absolute()
if examples is None:
raise ValueError("The parameter `examples` cannot be None")
elif isinstance(examples, list) and (
len(examples) == 0 or isinstance(examples[0], list)
):
pass
elif (
isinstance(examples, list) and len(inputs) == 1
): # If there is only one input component, examples can be provided as a regular list instead of a list of lists
examples = [[e] for e in examples]
elif isinstance(examples, str):
if not Path(examples).exists():
raise FileNotFoundError(
f"Could not find examples directory: {examples}"
)
working_directory = examples
if not (Path(examples) / LOG_FILE).exists():
if len(inputs) == 1:
examples = [[e] for e in os.listdir(examples)]
else:
raise FileNotFoundError(
"Could not find log file (required for multiple inputs): "
+ LOG_FILE
)
else:
with open(Path(examples) / LOG_FILE) as logs:
examples = list(csv.reader(logs))
examples = [
examples[i][: len(inputs)] for i in range(1, len(examples))
] # remove header and unnecessary columns
else:
raise ValueError(
"The parameter `examples` must either be a string directory or a list"
"(if there is only 1 input component) or (more generally), a nested "
"list, where each sublist represents a set of inputs."
)
input_has_examples = [False] * len(inputs)
for example in examples:
for idx, example_for_input in enumerate(example):
if example_for_input is not None:
try:
input_has_examples[idx] = True
except IndexError:
pass # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)
inputs_with_examples = [
inp for (inp, keep) in zip(inputs, input_has_examples) if keep
]
non_none_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in examples
]
self.examples = examples
self.non_none_examples = non_none_examples
self.inputs = inputs
self.inputs_with_examples = inputs_with_examples
self.outputs = outputs or []
self.fn = fn
self.cache_examples = cache_examples
self._api_mode = _api_mode
self.preprocess = preprocess
self.postprocess = postprocess
self.api_name = api_name
self.batch = batch
with utils.set_directory(working_directory):
self.processed_examples = []
for example in examples:
sub = []
for component, sample in zip(inputs, example):
prediction_value = component.postprocess(sample)
if isinstance(prediction_value, (GradioRootModel, GradioModel)):
prediction_value = prediction_value.model_dump()
prediction_value = processing_utils.move_files_to_cache(
prediction_value, component, postprocess=True
)
sub.append(prediction_value)
self.processed_examples.append(sub)
self.non_none_processed_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in self.processed_examples
]
if cache_examples:
for example in self.examples:
if len([ex for ex in example if ex is not None]) != len(self.inputs):
warnings.warn(
"Examples are being cached but not all input components have "
"example values. This may result in an exception being thrown by "
"your function. If you do get an error while caching examples, make "
"sure all of your inputs have example values for all of your examples "
"or you provide default values for those particular parameters in your function."
)
break
from gradio import components
with utils.set_directory(working_directory):
self.dataset = components.Dataset(
components=inputs_with_examples,
samples=non_none_examples,
type="index",
label=label,
samples_per_page=examples_per_page,
elem_id=elem_id,
)
self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
self.cached_file = Path(self.cached_folder) / "log.csv"
self.cache_examples = cache_examples
self.run_on_click = run_on_click
# async def load_example(self, example_id):
# processed_example = self.non_none_processed_examples[example_id]
# if len(self.inputs_with_examples) == 1:
# return update(
# value=processed_example[0], **self.dataset.component_props[0]
# )
# return [
# update(value=processed_example[i], **self.dataset.component_props[i])
# for i in range(len(self.inputs_with_examples))
# ]
def create(self) -> None:
"""Caches the examples if self.cache_examples is True and creates the Dataset
component to hold the examples"""
# if Context.root_block:
# self.load_input_event = self.dataset.click(
# self.load_example,
# inputs=[self.dataset],
# outputs=self.inputs_with_examples, # type: ignore
# show_progress="hidden",
# postprocess=False,
# queue=False,
# api_name=self.api_name, # type: ignore
# )
# if self.run_on_click and not self.cache_examples:
# if self.fn is None:
# raise ValueError("Cannot run_on_click if no function is provided")
# self.load_input_event.then(
# self.fn,
# inputs=self.inputs, # type: ignore
# outputs=self.outputs, # type: ignore
# )
# if self.cache_examples:
# if wasm_utils.IS_WASM:
# # In the Wasm mode, the `threading` module is not supported,
# # so `client_utils.synchronize_async` is also not available.
# # And `self.cache()` should be waited for to complete before this method returns,
# # (otherwise, an error "Cannot cache examples if not in a Blocks context" will be raised anyway)
# # so `eventloop.create_task(self.cache())` is also not an option.
# raise wasm_utils.WasmUnsupportedError(
# "Caching examples is not supported in the Wasm mode."
# )
# client_utils.synchronize_async(self.cache)
pass
async def cache(self) -> None:
"""
Caches all of the examples so that their predictions can be shown immediately.
"""
# if Context.root_block is None:
# raise ValueError("Cannot cache examples if not in a Blocks context")
# if Path(self.cached_file).exists():
# print(
# f"Using cache from '{utils.abspath(self.cached_folder)}' directory. If method or examples have changed since last caching, delete this folder to clear cache.\n"
# )
# else:
# print(f"Caching examples at: '{utils.abspath(self.cached_folder)}'")
# cache_logger = CSVLogger()
# generated_values = []
# if inspect.isgeneratorfunction(self.fn):
# def get_final_item(*args): # type: ignore
# x = None
# generated_values.clear()
# for x in self.fn(*args): # noqa: B007 # type: ignore
# generated_values.append(x)
# return x
# fn = get_final_item
# elif inspect.isasyncgenfunction(self.fn):
# async def get_final_item(*args):
# x = None
# generated_values.clear()
# async for x in self.fn(*args): # noqa: B007 # type: ignore
# generated_values.append(x)
# return x
# fn = get_final_item
# else:
# fn = self.fn
# # create a fake dependency to process the examples and get the predictions
# from gradio.events import EventListenerMethod
# dependency, fn_index = Context.root_block.set_event_trigger(
# [EventListenerMethod(Context.root_block, "load")],
# fn=fn,
# inputs=self.inputs_with_examples, # type: ignore
# outputs=self.outputs, # type: ignore
# preprocess=self.preprocess and not self._api_mode,
# postprocess=self.postprocess and not self._api_mode,
# batch=self.batch,
# )
# assert self.outputs is not None
# cache_logger.setup(self.outputs, self.cached_folder)
# for example_id, _ in enumerate(self.examples):
# print(f"Caching example {example_id + 1}/{len(self.examples)}")
# processed_input = self.processed_examples[example_id]
# if self.batch:
# processed_input = [[value] for value in processed_input]
# with utils.MatplotlibBackendMananger():
# prediction = await Context.root_block.process_api(
# fn_index=fn_index,
# inputs=processed_input,
# request=None,
# )
# output = prediction["data"]
# if len(generated_values):
# output = merge_generated_values_into_output(
# self.outputs, generated_values, output
# )
# if self.batch:
# output = [value[0] for value in output]
# cache_logger.flag(output)
# # Remove the "fake_event" to prevent bugs in loading interfaces from spaces
# Context.root_block.dependencies.remove(dependency)
# Context.root_block.fns.pop(fn_index)
# # Remove the original load_input_event and replace it with one that
# # also populates the input. We do it this way to to allow the cache()
# # method to be called independently of the create() method
# index = Context.root_block.dependencies.index(self.load_input_event)
# Context.root_block.dependencies.pop(index)
# Context.root_block.fns.pop(index)
# def load_example(example_id):
# processed_example = self.non_none_processed_examples[
# example_id
# ] + self.load_from_cache(example_id)
# return utils.resolve_singleton(processed_example)
# self.load_input_event = self.dataset.click(
# load_example,
# inputs=[self.dataset],
# outputs=self.inputs_with_examples + self.outputs, # type: ignore
# show_progress="hidden",
# postprocess=False,
# queue=False,
# api_name=self.api_name, # type: ignore
# )
pass
def load_from_cache(self, example_id: int) -> list[Any]:
"""Loads a particular cached example for the interface.
Parameters:
example_id: The id of the example to process (zero-indexed).
"""
with open(self.cached_file, encoding="utf-8") as cache:
examples = list(csv.reader(cache))
example = examples[example_id + 1] # +1 to adjust for header
output = []
assert self.outputs is not None
for component, value in zip(self.outputs, example):
value_to_use = value
try:
value_as_dict = ast.literal_eval(value)
# File components that output multiple files get saved as a python list
# need to pass the parsed list to serialize
# TODO: Better file serialization in 4.0
if isinstance(value_as_dict, list) and isinstance(
component, components.File
):
value_to_use = value_as_dict
assert utils.is_update(value_as_dict)
output.append(value_as_dict)
except (ValueError, TypeError, SyntaxError, AssertionError):
output.append(
component.read_from_flag(
value_to_use,
self.cached_folder,
)
)
return output
def merge_generated_values_into_output(
components: list[Component], generated_values: list, output: list
):
from gradio.components.base import StreamingOutput
for output_index, output_component in enumerate(components):
if isinstance(output_component, StreamingOutput) and output_component.streaming:
binary_chunks = []
for i, chunk in enumerate(generated_values):
if len(components) > 1:
chunk = chunk[output_index]
processed_chunk = output_component.postprocess(chunk)
if isinstance(processed_chunk, (GradioModel, GradioRootModel)):
processed_chunk = processed_chunk.model_dump()
binary_chunks.append(
output_component.stream_output(processed_chunk, "", i == 0)[0]
)
binary_data = b"".join(binary_chunks)
tempdir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(tempdir, exist_ok=True)
temp_file = tempfile.NamedTemporaryFile(dir=tempdir, delete=False)
with open(temp_file.name, "wb") as f:
f.write(binary_data)
output[output_index] = {
"path": temp_file.name,
}
return output
class TrackedIterable:
def __init__(
self,
iterable: Iterable | None,
index: int | None,
length: int | None,
desc: str | None,
unit: str | None,
_tqdm=None,
progress: float | None = None,
) -> None:
self.iterable = iterable
self.index = index
self.length = length
self.desc = desc
self.unit = unit
self._tqdm = _tqdm
self.progress = progress
@document("__call__", "tqdm")
class Progress(Iterable):
"""
The Progress class provides a custom progress tracker that is used in a function signature.
To attach a Progress tracker to a function, simply add a parameter right after the input parameters that has a default value set to a `gradio.Progress()` instance.
The Progress tracker can then be updated in the function by calling the Progress object or using the `tqdm` method on an Iterable.
The Progress tracker is currently only available with `queue()`.
Example:
import gradio as gr
import time
def my_function(x, progress=gr.Progress()):
progress(0, desc="Starting...")
time.sleep(1)
for i in progress.tqdm(range(100)):
time.sleep(0.1)
return x
gr.Interface(my_function, gr.Textbox(), gr.Textbox()).queue().launch()
Demos: progress
"""
def __init__(
self,
track_tqdm: bool = False,
):
"""
Parameters:
track_tqdm: If True, the Progress object will track any tqdm.tqdm iterations with the tqdm library in the function.
"""
if track_tqdm:
patch_tqdm()
self.track_tqdm = track_tqdm
self.iterables: list[TrackedIterable] = []
def __len__(self):
return self.iterables[-1].length
def __iter__(self):
return self
def __next__(self):
"""
Updates progress tracker with next item in iterable.
"""
callback = self._progress_callback()
if callback:
current_iterable = self.iterables[-1]
while (
not hasattr(current_iterable.iterable, "__next__")
and len(self.iterables) > 0
):
current_iterable = self.iterables.pop()
callback(self.iterables)
if current_iterable.index is None:
raise IndexError("Index not set.")
current_iterable.index += 1
try:
return next(current_iterable.iterable) # type: ignore
except StopIteration:
self.iterables.pop()
raise
else:
return self
def __call__(
self,
progress: float | tuple[int, int | None] | None,
desc: str | None = None,
total: int | None = None,
unit: str = "steps",
_tqdm=None,
):
"""
Updates progress tracker with progress and message text.
Parameters:
progress: If float, should be between 0 and 1 representing completion. If Tuple, first number represents steps completed, and second value represents total steps or None if unknown. If None, hides progress bar.
desc: description to display.
total: estimated total number of steps.
unit: unit of iterations.
"""
callback = self._progress_callback()
if callback:
if isinstance(progress, tuple):
index, total = progress
progress = None
else:
index = None
callback(
self.iterables
+ [TrackedIterable(None, index, total, desc, unit, _tqdm, progress)]
)
else:
return progress
def tqdm(
self,
iterable: Iterable | None,
desc: str | None = None,
total: int | None = None,
unit: str = "steps",
_tqdm=None,
):
"""
Attaches progress tracker to iterable, like tqdm.
Parameters:
iterable: iterable to attach progress tracker to.
desc: description to display.
total: estimated total number of steps.
unit: unit of iterations.
"""
callback = self._progress_callback()
if callback:
if iterable is None:
new_iterable = TrackedIterable(None, 0, total, desc, unit, _tqdm)
self.iterables.append(new_iterable)
callback(self.iterables)
return self
length = len(iterable) if hasattr(iterable, "__len__") else None # type: ignore
self.iterables.append(
TrackedIterable(iter(iterable), 0, length, desc, unit, _tqdm)
)
return self
def update(self, n=1):
"""
Increases latest iterable with specified number of steps.
Parameters:
n: number of steps completed.
"""
callback = self._progress_callback()
if callback and len(self.iterables) > 0:
current_iterable = self.iterables[-1]
if current_iterable.index is None:
raise IndexError("Index not set.")
current_iterable.index += n
callback(self.iterables)
else:
return
def close(self, _tqdm):
"""
Removes iterable with given _tqdm.
"""
callback = self._progress_callback()
if callback:
for i in range(len(self.iterables)):
if id(self.iterables[i]._tqdm) == id(_tqdm):
self.iterables.pop(i)
break
callback(self.iterables)
else:
return
@staticmethod
def _progress_callback():
blocks = LocalContext.blocks.get()
event_id = LocalContext.event_id.get()
if not (blocks and event_id):
return None
return partial(blocks._queue.set_progress, event_id)
def patch_tqdm() -> None:
try:
_tqdm = __import__("tqdm")
except ModuleNotFoundError:
return
def init_tqdm(
self, iterable=None, desc=None, total=None, unit="steps", *args, **kwargs
):
self._progress = LocalContext.progress.get()
if self._progress is not None:
self._progress.tqdm(iterable, desc, total, unit, _tqdm=self)
kwargs["file"] = open(os.devnull, "w") # noqa: SIM115
self.__init__orig__(iterable, desc, total, *args, unit=unit, **kwargs)
def iter_tqdm(self):
if self._progress is not None:
return self._progress
return self.__iter__orig__()
def update_tqdm(self, n=1):
if self._progress is not None:
self._progress.update(n)
return self.__update__orig__(n)
def close_tqdm(self):
if self._progress is not None:
self._progress.close(self)
return self.__close__orig__()
def exit_tqdm(self, exc_type, exc_value, traceback):
if self._progress is not None:
self._progress.close(self)
return self.__exit__orig__(exc_type, exc_value, traceback)
# Backup
if not hasattr(_tqdm.tqdm, "__init__orig__"):
_tqdm.tqdm.__init__orig__ = _tqdm.tqdm.__init__
if not hasattr(_tqdm.tqdm, "__update__orig__"):
_tqdm.tqdm.__update__orig__ = _tqdm.tqdm.update
if not hasattr(_tqdm.tqdm, "__close__orig__"):
_tqdm.tqdm.__close__orig__ = _tqdm.tqdm.close
if not hasattr(_tqdm.tqdm, "__exit__orig__"):
_tqdm.tqdm.__exit__orig__ = _tqdm.tqdm.__exit__
if not hasattr(_tqdm.tqdm, "__iter__orig__"):
_tqdm.tqdm.__iter__orig__ = _tqdm.tqdm.__iter__
# Patch
_tqdm.tqdm.__init__ = init_tqdm
_tqdm.tqdm.update = update_tqdm
_tqdm.tqdm.close = close_tqdm
_tqdm.tqdm.__exit__ = exit_tqdm
_tqdm.tqdm.__iter__ = iter_tqdm
if hasattr(_tqdm, "auto") and hasattr(_tqdm.auto, "tqdm"):
_tqdm.auto.tqdm = _tqdm.tqdm
def create_tracker(fn, track_tqdm):
progress = Progress(track_tqdm=track_tqdm)
if not track_tqdm:
return progress, fn
return progress, utils.function_wrapper(
f=fn,
before_fn=LocalContext.progress.set,
before_args=(progress,),
after_fn=LocalContext.progress.set,
after_args=(None,),
)
def special_args(
fn: Callable,
inputs: list[Any] | None = None,
request: routes.Request | None = None,
event_data: EventData | None = None,
) -> tuple[list, int | None, int | None]:
"""
Checks if function has special arguments Request or EventData (via annotation) or Progress (via default value).
If inputs is provided, these values will be loaded into the inputs array.
Parameters:
fn: function to check.
inputs: array to load special arguments into.
request: request to load into inputs.
event_data: event-related data to load into inputs.
Returns:
updated inputs, progress index, event data index.
"""
try:
signature = inspect.signature(fn)
except ValueError:
return inputs or [], None, None
type_hints = utils.get_type_hints(fn)
positional_args = []
for param in signature.parameters.values():
if param.kind not in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
break
positional_args.append(param)
progress_index = None
event_data_index = None
for i, param in enumerate(positional_args):
type_hint = type_hints.get(param.name)
if isinstance(param.default, Progress):
progress_index = i
if inputs is not None:
inputs.insert(i, param.default)
elif type_hint == routes.Request:
if inputs is not None:
inputs.insert(i, request)
elif (
type_hint == Optional[oauth.OAuthProfile]
or type_hint == oauth.OAuthProfile
# Note: "OAuthProfile | None" is equals to Optional[OAuthProfile] in Python
# => it is automatically handled as well by the above condition
# (adding explicit "OAuthProfile | None" would break in Python3.9)
):
if inputs is not None:
# Retrieve session from gr.Request, if it exists (i.e. if user is logged in)
session = (
# request.session (if fastapi.Request obj i.e. direct call)
getattr(request, "session", {})
or
# or request.request.session (if gr.Request obj i.e. websocket call)
getattr(getattr(request, "request", None), "session", {})
)
oauth_profile = (
session["oauth_profile"] if "oauth_profile" in session else None
)
if type_hint == oauth.OAuthProfile and oauth_profile is None:
raise Error(
"This action requires a logged in user. Please sign in and retry."
)
inputs.insert(i, oauth_profile)
elif (
type_hint
and inspect.isclass(type_hint)
and issubclass(type_hint, EventData)
):
event_data_index = i
if inputs is not None and event_data is not None:
inputs.insert(i, type_hint(event_data.target, event_data._data))
elif (
param.default is not param.empty and inputs is not None and len(inputs) <= i
):
inputs.insert(i, param.default)
if inputs is not None:
while len(inputs) < len(positional_args):
i = len(inputs)
param = positional_args[i]
if param.default == param.empty:
warnings.warn("Unexpected argument. Filling with None.")
inputs.append(None)
else:
inputs.append(param.default)
return inputs or [], progress_index, event_data_index
def update(
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
visible: bool | None = None,
**kwargs,
) -> dict:
"""
Updates a component's properties. When a function passed into a Gradio Interface or a Blocks events returns a value, it typically updates the value of the output component. But it is also possible to update the *properties* of an output component (such as the number of lines of a `Textbox` or the visibility of an `Row`) by returning a component and passing in the parameters to update in the constructor of the component. Alternatively, you can return `gr.update(...)` with any arbitrary parameters to update. (This is useful as a shorthand or if the same function can be called with different components to update.)
Parameters:
elem_id: Use this to update the id of the component in the HTML DOM
elem_classes: Use this to update the classes of the component in the HTML DOM
visible: Use this to update the visibility of the component
kwargs: Any other keyword arguments to update the component's properties.
Example:
import gradio as gr
with gr.Blocks() as demo:
radio = gr.Radio([1, 2, 4], label="Set the value of the number")
number = gr.Number(value=2, interactive=True)
radio.change(fn=lambda value: gr.update(value=value), inputs=radio, outputs=number)
demo.launch()
"""
kwargs["__type__"] = "update"
if elem_id is not None:
kwargs["elem_id"] = elem_id
if elem_classes is not None:
kwargs["elem_classes"] = elem_classes
if visible is not None:
kwargs["visible"] = visible
return kwargs
def skip() -> dict:
return {"__type__": "update"}
@document()
def make_waveform(
audio: str | tuple[int, np.ndarray],
*,
bg_color: str = "#f3f4f6",
bg_image: str | None = None,
fg_alpha: float = 0.75,
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"),
bar_count: int = 50,
bar_width: float = 0.6,
animate: bool = False,
) -> str:
"""
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component.
Parameters:
audio: Audio file path or tuple of (sample_rate, audio_data)
bg_color: Background color of waveform (ignored if bg_image is provided)
bg_image: Background image of waveform
fg_alpha: Opacity of foreground waveform
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient
bar_count: Number of bars in waveform
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc.
animate: If true, the audio waveform overlay will be animated, if false, it will be static.
Returns:
A filepath to the output video in mp4 format.
"""
if isinstance(audio, str):
audio_file = audio
audio = processing_utils.audio_from_file(audio)
else:
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav")
audio_file = tmp_wav.name
if not os.path.isfile(audio_file):
raise ValueError("Audio file not found.")
ffmpeg = shutil.which("ffmpeg")
if not ffmpeg:
raise RuntimeError("ffmpeg not found.")
duration = round(len(audio[1]) / audio[0], 4)
# Helper methods to create waveform
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
assert n > 1
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
# Reshape audio to have a fixed number of bars
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
with utils.MatplotlibBackendMananger():
plt.clf()
# Plot waveform
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
if animate:
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis("off")
plt.margins(x=0)
bar_alpha = fg_alpha if animate else 1.0
barcollection = plt.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=bar_alpha,
)
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"}
if bg_image is not None:
savefig_kwargs["transparent"] = True
if animate:
savefig_kwargs["facecolor"] = "none"
else:
savefig_kwargs["facecolor"] = bg_color
plt.savefig(tmp_img.name, **savefig_kwargs)
if not animate:
waveform_img = PIL.Image.open(tmp_img.name)
waveform_img = waveform_img.resize((1000, 400))
# Composite waveform with background image
if bg_image is not None:
waveform_array = np.array(waveform_img)
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha
waveform_img = PIL.Image.fromarray(waveform_array)
bg_img = PIL.Image.open(bg_image)
waveform_width, waveform_height = waveform_img.size
bg_width, bg_height = bg_img.size
if waveform_width != bg_width:
bg_img = bg_img.resize(
(
waveform_width,
2 * int(bg_height * waveform_width / bg_width / 2),
)
)
bg_width, bg_height = bg_img.size
composite_height = max(bg_height, waveform_height)
composite = PIL.Image.new(
"RGBA", (waveform_width, composite_height), "#FFFFFF"
)
composite.paste(bg_img, (0, composite_height - bg_height))
composite.paste(
waveform_img, (0, composite_height - waveform_height), waveform_img
)
composite.save(tmp_img.name)
img_width, img_height = composite.size
else:
img_width, img_height = waveform_img.size
waveform_img.save(tmp_img.name)
else:
def _animate(_):
for idx, b in enumerate(barcollection):
rand_height = np.random.uniform(0.8, 1.2)
b.set_height(samples[idx] * rand_height * 2)
b.set_y((-rand_height * samples)[idx])
frames = int(duration * 10)
anim = animation.FuncAnimation(
fig, # type: ignore
_animate,
repeat=False,
blit=False,
frames=frames,
interval=100,
)
anim.save(
tmp_img.name,
writer="pillow",
fps=10,
codec="png",
savefig_kwargs=savefig_kwargs,
)
# Convert waveform to video with ffmpeg
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
if animate and bg_image is not None:
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
bg_image,
"-i",
tmp_img.name,
"-i",
audio_file,
"-filter_complex",
"[0:v]scale=w=trunc(iw/2)*2:h=trunc(ih/2)*2[bg];[1:v]format=rgba,colorchannelmixer=aa=1.0[ov];[bg][ov]overlay=(main_w-overlay_w*0.9)/2:main_h-overlay_h*0.9/2[output]",
"-t",
str(duration),
"-map",
"[output]",
"-map",
"2:a",
"-c:v",
"libx264",
"-c:a",
"aac",
"-shortest",
"-y",
output_mp4.name,
]
elif animate and bg_image is None:
ffmpeg_cmd = [
ffmpeg,
"-i",
tmp_img.name,
"-i",
audio_file,
"-filter_complex",
"[0:v][1:a]concat=n=1:v=1:a=1[v];[v]scale=1000:400,format=yuv420p[v_scaled]",
"-map",
"[v_scaled]",
"-map",
"1:a",
"-c:v",
"libx264",
"-c:a",
"aac",
"-shortest",
"-y",
output_mp4.name,
]
else:
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
tmp_img.name,
"-i",
audio_file,
"-vf",
f"color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", # type: ignore
"-t",
str(duration),
"-y",
output_mp4.name,
]
subprocess.check_call(ffmpeg_cmd)
return output_mp4.name
def log_message(message: str, level: Literal["info", "warning"] = "info"):
from gradio.context import LocalContext
blocks = LocalContext.blocks.get()
event_id = LocalContext.event_id.get()
if blocks is None or event_id is None:
# Function called outside of Gradio if blocks is None
# Or from /api/predict if event_id is None
if level == "info":
print(message)
elif level == "warning":
warnings.warn(message)
return
blocks._queue.log_message(event_id=event_id, log=message, level=level)
set_documentation_group("modals")
@document()
def Warning(message: str = "Warning issued."): # noqa: N802
"""
This function allows you to pass custom warning messages to the user. You can do so simply by writing `gr.Warning('message here')` in your function, and when that line is executed the custom message will appear in a modal on the demo. The modal is yellow by default and has the heading: "Warning." Queue must be enabled for this behavior; otherwise, the warning will be printed to the console using the `warnings` library.
Demos: blocks_chained_events
Parameters:
message: The warning message to be displayed to the user.
Example:
import gradio as gr
def hello_world():
gr.Warning('This is a warning message.')
return "hello world"
with gr.Blocks() as demo:
md = gr.Markdown()
demo.load(hello_world, inputs=None, outputs=[md])
demo.queue().launch()
"""
log_message(message, level="warning")
@document()
def Info(message: str = "Info issued."): # noqa: N802
"""
This function allows you to pass custom info messages to the user. You can do so simply by writing `gr.Info('message here')` in your function, and when that line is executed the custom message will appear in a modal on the demo. The modal is gray by default and has the heading: "Info." Queue must be enabled for this behavior; otherwise, the message will be printed to the console.
Demos: blocks_chained_events
Parameters:
message: The info message to be displayed to the user.
Example:
import gradio as gr
def hello_world():
gr.Info('This is some info.')
return "hello world"
with gr.Blocks() as demo:
md = gr.Markdown()
demo.load(hello_world, inputs=None, outputs=[md])
demo.queue().launch()
"""
log_message(message, level="info")
|