import streamlit as st import os from langchain_community.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_qdrant import QdrantVectorStore from langchain.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from operator import itemgetter from langchain_community.embeddings import HuggingFaceEmbeddings # Add this line from sentence_transformers import SentenceTransformer model = SentenceTransformer("Technocoloredgeek/midterm-finetuned-embedding") # Set up API keys os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] # PDF links pdf_links = [ "https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf", "https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf" ] @st.cache_resource def load_and_process_pdfs(pdf_links): documents = [] for link in pdf_links: loader = PyMuPDFLoader(file_path=link) documents.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=40, length_function=len, is_separator_regex=False ) return text_splitter.split_documents(documents) @st.cache_resource def setup_vectorstore(): LOCATION = ":memory:" COLLECTION_NAME = "AI_Ethics_Framework" qdrant_client = QdrantClient(location=LOCATION) # Use your SentenceTransformer model for embeddings embeddings = HuggingFaceEmbeddings(model_name="Technocoloredgeek/midterm-finetuned-embedding") # Get the vector size from the embeddings VECTOR_SIZE = len(embeddings.embed_query("test")) # Create the collection qdrant_client.create_collection( collection_name=COLLECTION_NAME, vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE), ) # Create the vector store with the new embeddings qdrant_vector_store = QdrantVectorStore( client=qdrant_client, collection_name=COLLECTION_NAME, embedding=embeddings ) # Load and add documents documents = load_and_process_pdfs(pdf_links) qdrant_vector_store.add_documents(documents) return qdrant_vector_store @st.cache_resource def create_rag_pipeline(_vector_store): retriever = _vector_store.as_retriever() template = """ You are an expert AI assistant with deep knowledge of business, technology, and entrepreneurship. Your task is to provide accurate, insightful answers based solely on the given context. Follow these guidelines: 1. Analyze the question carefully to understand the core information being sought. 2. Thoroughly examine the provided context, identifying key relevant information. 3. Formulate a clear, concise answer that directly addresses the question. 4. Use specific details and examples from the context to support your answer. 5. If the context doesn't contain sufficient information to fully answer the question, state this clearly and say,'I don't know'. 6. Do not introduce any information not present in the context. 7. If asked for an opinion or recommendation, base it strictly on insights from the context. 8. Use a confident, authoritative tone while maintaining accuracy. 9. If you cannot provide a clear answer to the question, reply with "I don't know". Question: {question} Context: {context} Answer: """ prompt = ChatPromptTemplate.from_template(template) primary_qa_llm = ChatOpenAI(model_name="gpt-4", temperature=0) retrieval_augmented_qa_chain = ( {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | {"response": prompt | primary_qa_llm, "context": itemgetter("context")} ) return retrieval_augmented_qa_chain # Streamlit UI st.title("Ask About AI Ethics!") vector_store = setup_vectorstore() rag_pipeline = create_rag_pipeline(vector_store) user_query = st.text_input("Enter your question about AI Ethics:") if user_query: with st.spinner("Generating response..."): result = rag_pipeline.invoke({"question": user_query}) st.write("Response:") st.write(result["response"].content) st.write("Context Used:") st.write(result["context"])