Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
model_name = 'Pyg'
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ")
|
10 |
+
|
11 |
+
pipe = pipeline("text-generation", model="TheBloke/Pygmalion-7B-SuperHOT-8K-GPTQ")
|
12 |
+
|
13 |
+
def generate_text(input_text):
|
14 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
15 |
+
outputs = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
16 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
return text
|
18 |
+
|
19 |
+
iface = gr.Interface(fn=generate_text,
|
20 |
+
inputs=gr.inputs.Textbox(lines=5, placeholder='Enter text here...'),
|
21 |
+
outputs=gr.outputs.Textbox())
|
22 |
+
|
23 |
+
iface.launch()
|