from __future__ import print_function import os import torch from torch.utils.model_zoo import load_url from enum import Enum import numpy as np import cv2 try: import urllib.request as request_file except BaseException: import urllib as request_file from .models import FAN, ResNetDepth from .utils import * class LandmarksType(Enum): """Enum class defining the type of landmarks to detect. ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face ``_2halfD`` - this points represent the projection of the 3D points into 3D ``_3D`` - detect the points ``(x,y,z)``` in a 3D space """ _2D = 1 _2halfD = 2 _3D = 3 class NetworkSize(Enum): # TINY = 1 # SMALL = 2 # MEDIUM = 3 LARGE = 4 def __new__(cls, value): member = object.__new__(cls) member._value_ = value return member def __int__(self): return self.value class FaceAlignment: def __init__(self, landmarks_type, network_size=NetworkSize.LARGE, device='cuda', flip_input=False, face_detector='sfd', verbose=False): self.device = device self.flip_input = flip_input self.landmarks_type = landmarks_type self.verbose = verbose network_size = int(network_size) if 'cuda' in device: torch.backends.cudnn.benchmark = True # torch.backends.cuda.matmul.allow_tf32 = False # torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = False # torch.backends.cudnn.allow_tf32 = True print('cuda start') # Get the face detector face_detector_module = __import__('face_detection.detection.' + face_detector, globals(), locals(), [face_detector], 0) self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose) def get_detections_for_batch(self, images): images = images[..., ::-1] detected_faces = self.face_detector.detect_from_batch(images.copy()) results = [] for i, d in enumerate(detected_faces): if len(d) == 0: results.append(None) continue d = d[0] d = np.clip(d, 0, None) x1, y1, x2, y2 = map(int, d[:-1]) results.append((x1, y1, x2, y2)) return results class YOLOv8_face: def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5): self.conf_threshold = conf_thres self.iou_threshold = iou_thres self.class_names = ['face'] self.num_classes = len(self.class_names) # Initialize model self.net = cv2.dnn.readNet(path) self.input_height = 640 self.input_width = 640 self.reg_max = 16 self.project = np.arange(self.reg_max) self.strides = (8, 16, 32) self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))] self.anchors = self.make_anchors(self.feats_hw) def make_anchors(self, feats_hw, grid_cell_offset=0.5): """Generate anchors from features.""" anchor_points = {} for i, stride in enumerate(self.strides): h,w = feats_hw[i] x = np.arange(0, w) + grid_cell_offset # shift x y = np.arange(0, h) + grid_cell_offset # shift y sx, sy = np.meshgrid(x, y) # sy, sx = np.meshgrid(y, x) anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2) return anchor_points def softmax(self, x, axis=1): x_exp = np.exp(x) # 如果是列向量,则axis=0 x_sum = np.sum(x_exp, axis=axis, keepdims=True) s = x_exp / x_sum return s def resize_image(self, srcimg, keep_ratio=True): top, left, newh, neww = 0, 0, self.input_width, self.input_height if keep_ratio and srcimg.shape[0] != srcimg.shape[1]: hw_scale = srcimg.shape[0] / srcimg.shape[1] if hw_scale > 1: newh, neww = self.input_height, int(self.input_width / hw_scale) img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) left = int((self.input_width - neww) * 0.5) img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT, value=(0, 0, 0)) # add border else: newh, neww = int(self.input_height * hw_scale), self.input_width img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) top = int((self.input_height - newh) * 0.5) img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=(0, 0, 0)) else: img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA) return img, newh, neww, top, left def detect(self, srcimg): input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB)) scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww input_img = input_img.astype(np.float32) / 255.0 blob = cv2.dnn.blobFromImage(input_img) self.net.setInput(blob) outputs = self.net.forward(self.net.getUnconnectedOutLayersNames()) # if isinstance(outputs, tuple): # outputs = list(outputs) # if float(cv2.__version__[:3])>=4.7: # outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步,opencv4.5不需要 # Perform inference on the image det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw) return det_bboxes, det_conf, det_classid, landmarks def post_process(self, preds, scale_h, scale_w, padh, padw): bboxes, scores, landmarks = [], [], [] for i, pred in enumerate(preds): stride = int(self.input_height/pred.shape[2]) pred = pred.transpose((0, 2, 3, 1)) box = pred[..., :self.reg_max * 4] cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1)) kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5 # tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max) tmp = box.reshape(-1, 4, self.reg_max) bbox_pred = self.softmax(tmp, axis=-1) bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4)) bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3])) bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则 bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]]) kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15)) kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15)) bboxes.append(bbox) scores.append(cls) landmarks.append(kpts) bboxes = np.concatenate(bboxes, axis=0) scores = np.concatenate(scores, axis=0) landmarks = np.concatenate(landmarks, axis=0) bboxes_wh = bboxes.copy() bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh classIds = np.argmax(scores, axis=1) confidences = np.max(scores, axis=1) ####max_class_confidence mask = confidences>self.conf_threshold bboxes_wh = bboxes_wh[mask] ###合理使用广播法则 confidences = confidences[mask] classIds = classIds[mask] landmarks = landmarks[mask] indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold, self.iou_threshold).flatten() if len(indices) > 0: mlvl_bboxes = bboxes_wh[indices] confidences = confidences[indices] classIds = classIds[indices] landmarks = landmarks[indices] return mlvl_bboxes, confidences, classIds, landmarks else: print('nothing detect') return np.array([]), np.array([]), np.array([]), np.array([]) def distance2bbox(self, points, distance, max_shape=None): x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = np.clip(x1, 0, max_shape[1]) y1 = np.clip(y1, 0, max_shape[0]) x2 = np.clip(x2, 0, max_shape[1]) y2 = np.clip(y2, 0, max_shape[0]) return np.stack([x1, y1, x2, y2], axis=-1) def draw_detections(self, image, boxes, scores, kpts): for box, score, kp in zip(boxes, scores, kpts): x, y, w, h = box.astype(int) # Draw rectangle cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3) cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2) for i in range(5): cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1) # cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1) return image ROOT = os.path.dirname(os.path.abspath(__file__))