import os import time import pdb import gradio as gr import spaces import numpy as np import sys import subprocess from huggingface_hub import snapshot_download import argparse import os from omegaconf import OmegaConf import numpy as np import cv2 import torch import glob import pickle from tqdm import tqdm import copy from argparse import Namespace from musetalk.utils.utils import get_file_type,get_video_fps,datagen from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder from musetalk.utils.blending import get_image from musetalk.utils.utils import load_all_model import shutil ProjectDir = os.path.abspath(os.path.dirname(__file__)) CheckpointsDir = os.path.join(ProjectDir, "checkpoints") def download_model(): if not os.path.exists(CheckpointsDir): os.makedirs(CheckpointsDir) print("Checkpoint Not Downloaded, start downloading...") tic = time.time() snapshot_download( repo_id="TMElyralab/MuseTalk", local_dir=CheckpointsDir, max_workers=8, local_dir_use_symlinks=True, ) toc = time.time() print(f"download cost {toc-tic} seconds") else: print("Already download the model.") @spaces.GPU(duration=600) @torch.no_grad() def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)): args_dict={"result_dir":'./results', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script args = Namespace(**args_dict) input_basename = os.path.basename(video_path).split('.')[0] audio_basename = os.path.basename(audio_path).split('.')[0] output_basename = f"{input_basename}_{audio_basename}" result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input os.makedirs(result_img_save_path,exist_ok =True) if args.output_vid_name=="": output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") else: output_vid_name = os.path.join(args.result_dir, args.output_vid_name) ############################################## extract frames from source video ############################################## if get_file_type(video_path)=="video": save_dir_full = os.path.join(args.result_dir, input_basename) os.makedirs(save_dir_full,exist_ok = True) cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" os.system(cmd) input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) fps = get_video_fps(video_path) else: # input img folder input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) fps = args.fps #print(input_img_list) ############################################## extract audio feature ############################################## whisper_feature = audio_processor.audio2feat(audio_path) whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) ############################################## preprocess input image ############################################## if os.path.exists(crop_coord_save_path) and args.use_saved_coord: print("using extracted coordinates") with open(crop_coord_save_path,'rb') as f: coord_list = pickle.load(f) frame_list = read_imgs(input_img_list) else: print("extracting landmarks...time consuming") coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) with open(crop_coord_save_path, 'wb') as f: pickle.dump(coord_list, f) i = 0 input_latent_list = [] for bbox, frame in zip(coord_list, frame_list): if bbox == coord_placeholder: continue x1, y1, x2, y2 = bbox crop_frame = frame[y1:y2, x1:x2] crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) latents = vae.get_latents_for_unet(crop_frame) input_latent_list.append(latents) # to smooth the first and the last frame frame_list_cycle = frame_list + frame_list[::-1] coord_list_cycle = coord_list + coord_list[::-1] input_latent_list_cycle = input_latent_list + input_latent_list[::-1] ############################################## inference batch by batch ############################################## print("start inference") video_num = len(whisper_chunks) batch_size = args.batch_size gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) res_frame_list = [] for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384 audio_feature_batch = pe(audio_feature_batch) pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample recon = vae.decode_latents(pred_latents) for res_frame in recon: res_frame_list.append(res_frame) ############################################## pad to full image ############################################## print("pad talking image to original video") for i, res_frame in enumerate(tqdm(res_frame_list)): bbox = coord_list_cycle[i%(len(coord_list_cycle))] ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) x1, y1, x2, y2 = bbox try: res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) except: # print(bbox) continue combine_frame = get_image(ori_frame,res_frame,bbox) cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 temp.mp4" print(cmd_img2video) os.system(cmd_img2video) cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" print(cmd_combine_audio) os.system(cmd_combine_audio) os.remove("temp.mp4") shutil.rmtree(result_img_save_path) print(f"result is save to {output_vid_name}") return output_vid_name download_model() # for huggingface deployment. # load model weights audio_processor,vae,unet,pe = load_all_model() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") timesteps = torch.tensor([0], device=device) def check_video(video): # Define the output video file name dir_path, file_name = os.path.split(video) if file_name.startswith("outputxxx_"): return video # Add the output prefix to the file name output_file_name = "outputxxx_" + file_name # Combine the directory path and the new file name output_video = os.path.join(dir_path, output_file_name) # Run the ffmpeg command to change the frame rate to 25fps command = f"ffmpeg -i {video} -r 25 {output_video} -y" subprocess.run(command, shell=True, check=True) return output_video css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" with gr.Blocks(css=css) as demo: gr.Markdown( "

MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting

\

\
\ Yue Zhang \*,\ Minhao Liu\*,\ Zhaokang Chen,\ Bin Wu,\ Yingjie He,\ Chao Zhan,\ Wenjiang Zhou\ (*Equal Contribution, Corresponding Author, benbinwu@tencent.com)\ Lyra Lab, Tencent Music Entertainment\

\ [Github Repo]\ [Huggingface]\ [Technical report(Coming Soon)] \ [Project Page(Coming Soon)]
" ) with gr.Row(): with gr.Column(): audio = gr.Audio(label="Driven Audio",type="filepath") video = gr.Video(label="Reference Video") bbox_shift = gr.Number(label="BBox_shift,[-9,9]", value=-1) btn = gr.Button("Generate") out1 = gr.Video() video.change( fn=check_video, inputs=[video], outputs=[video] ) btn.click( fn=inference, inputs=[ audio, video, bbox_shift, ], outputs=out1, ) # Set the IP and port ip_address = "0.0.0.0" # Replace with your desired IP address port_number = 7860 # Replace with your desired port number demo.queue().launch( share=False , debug=True, server_name=ip_address, server_port=port_number )