import importlib import os import numpy as np import cv2 import torch import torch.distributed as dist import torchvision def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def check_istarget(name, para_list): """ name: full name of source para para_list: partial name of target para """ istarget = False for para in para_list: if para in name: return True return istarget def instantiate_from_config(config): if not "target" in config: if config == "__is_first_stage__": return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def load_npz_from_dir(data_dir): data = [ np.load(os.path.join(data_dir, data_name))["arr_0"] for data_name in os.listdir(data_dir) ] data = np.concatenate(data, axis=0) return data def load_npz_from_paths(data_paths): data = [np.load(data_path)["arr_0"] for data_path in data_paths] data = np.concatenate(data, axis=0) return data def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): h, w = image.shape[:2] if resize_short_edge is not None: k = resize_short_edge / min(h, w) else: k = max_resolution / (h * w) k = k**0.5 h = int(np.round(h * k / 64)) * 64 w = int(np.round(w * k / 64)) * 64 image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) return image def setup_dist(args): if dist.is_initialized(): return torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group("nccl", init_method="env://") def save_videos(batch_tensors, savedir, filenames, fps=16): # b,samples,c,t,h,w n_samples = batch_tensors.shape[1] for idx, vid_tensor in enumerate(batch_tensors): video = vid_tensor.detach().cpu() video = torch.clamp(video.float(), -1.0, 1.0) video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w frame_grids = [ torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video ] # [3, 1*h, n*w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) savepath = os.path.join(savedir, f"{filenames[idx]}.mp4") torchvision.io.write_video( savepath, grid, fps=fps, video_codec="h264", options={"crf": "10"} )