Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
from einops import repeat | |
import torch | |
import torch.nn.functional as F | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
else: | |
embedding = repeat(timesteps, "b -> b d", d=dim) | |
return embedding | |
def make_beta_schedule( | |
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 | |
): | |
if schedule == "linear": | |
betas = ( | |
torch.linspace( | |
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 | |
) | |
** 2 | |
) | |
elif schedule == "cosine": | |
timesteps = ( | |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s | |
) | |
alphas = timesteps / (1 + cosine_s) * np.pi / 2 | |
alphas = torch.cos(alphas).pow(2) | |
alphas = alphas / alphas[0] | |
betas = 1 - alphas[1:] / alphas[:-1] | |
betas = np.clip(betas, a_min=0, a_max=0.999) | |
elif schedule == "sqrt_linear": | |
betas = torch.linspace( | |
linear_start, linear_end, n_timestep, dtype=torch.float64 | |
) | |
elif schedule == "sqrt": | |
betas = ( | |
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
** 0.5 | |
) | |
else: | |
raise ValueError(f"schedule '{schedule}' unknown.") | |
return betas.numpy() | |
def make_ddim_timesteps( | |
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True | |
): | |
if ddim_discr_method == "uniform": | |
c = num_ddpm_timesteps // num_ddim_timesteps | |
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) | |
elif ddim_discr_method == "quad": | |
ddim_timesteps = ( | |
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 | |
).astype(int) | |
else: | |
raise NotImplementedError( | |
f'There is no ddim discretization method called "{ddim_discr_method}"' | |
) | |
# assert ddim_timesteps.shape[0] == num_ddim_timesteps | |
# add one to get the final alpha values right (the ones from first scale to data during sampling) | |
steps_out = ddim_timesteps + 1 | |
if verbose: | |
print(f"Selected timesteps for ddim sampler: {steps_out}") | |
return steps_out | |
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): | |
# select alphas for computing the variance schedule | |
# print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}') | |
alphas = alphacums[ddim_timesteps] | |
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) | |
# according the the formula provided in https://arxiv.org/abs/2010.02502 | |
sigmas = eta * np.sqrt( | |
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) | |
) | |
if verbose: | |
print( | |
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" | |
) | |
print( | |
f"For the chosen value of eta, which is {eta}, " | |
f"this results in the following sigma_t schedule for ddim sampler {sigmas}" | |
) | |
return sigmas, alphas, alphas_prev | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |