Spaces:
Running
on
Zero
Running
on
Zero
""" | |
wild mixture of | |
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py | |
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
https://github.com/CompVis/taming-transformers | |
-- merci | |
""" | |
from functools import partial | |
from contextlib import contextmanager | |
import numpy as np | |
from tqdm import tqdm | |
from einops import rearrange, repeat | |
import logging | |
mainlogger = logging.getLogger("mainlogger") | |
import torch | |
import torch.nn as nn | |
from torchvision.utils import make_grid | |
import pytorch_lightning as pl | |
from utils.utils import instantiate_from_config | |
from lvdm.ema import LitEma | |
from lvdm.distributions import DiagonalGaussianDistribution | |
from lvdm.models.utils_diffusion import make_beta_schedule | |
from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler | |
from lvdm.basics import disabled_train | |
from lvdm.common import extract_into_tensor, noise_like, exists, default | |
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} | |
class DDPM(pl.LightningModule): | |
# classic DDPM with Gaussian diffusion, in image space | |
def __init__( | |
self, | |
unet_config, | |
timesteps=1000, | |
beta_schedule="linear", | |
loss_type="l2", | |
ckpt_path=None, | |
ignore_keys=[], | |
load_only_unet=False, | |
monitor=None, | |
use_ema=True, | |
first_stage_key="image", | |
image_size=256, | |
channels=3, | |
log_every_t=100, | |
clip_denoised=True, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
given_betas=None, | |
original_elbo_weight=0.0, | |
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
l_simple_weight=1.0, | |
conditioning_key=None, | |
parameterization="eps", # all assuming fixed variance schedules | |
scheduler_config=None, | |
use_positional_encodings=False, | |
learn_logvar=False, | |
logvar_init=0.0, | |
): | |
super().__init__() | |
assert parameterization in [ | |
"eps", | |
"x0", | |
], 'currently only supporting "eps" and "x0"' | |
self.parameterization = parameterization | |
mainlogger.info( | |
f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode" | |
) | |
self.cond_stage_model = None | |
self.clip_denoised = clip_denoised | |
self.log_every_t = log_every_t | |
self.first_stage_key = first_stage_key | |
self.channels = channels | |
self.temporal_length = unet_config.params.temporal_length | |
self.image_size = image_size | |
if isinstance(self.image_size, int): | |
self.image_size = [self.image_size, self.image_size] | |
self.use_positional_encodings = use_positional_encodings | |
self.model = DiffusionWrapper(unet_config, conditioning_key) | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.model) | |
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.use_scheduler = scheduler_config is not None | |
if self.use_scheduler: | |
self.scheduler_config = scheduler_config | |
self.v_posterior = v_posterior | |
self.original_elbo_weight = original_elbo_weight | |
self.l_simple_weight = l_simple_weight | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt( | |
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet | |
) | |
self.register_schedule( | |
given_betas=given_betas, | |
beta_schedule=beta_schedule, | |
timesteps=timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s, | |
) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
def register_schedule( | |
self, | |
given_betas=None, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
): | |
if exists(given_betas): | |
betas = given_betas | |
else: | |
betas = make_beta_schedule( | |
beta_schedule, | |
timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s, | |
) | |
alphas = 1.0 - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) | |
(timesteps,) = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert ( | |
alphas_cumprod.shape[0] == self.num_timesteps | |
), "alphas have to be defined for each timestep" | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer("betas", to_torch(betas)) | |
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) | |
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer( | |
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) | |
) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * ( | |
1.0 - alphas_cumprod_prev | |
) / (1.0 - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer("posterior_variance", to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer( | |
"posterior_log_variance_clipped", | |
to_torch(np.log(np.maximum(posterior_variance, 1e-20))), | |
) | |
self.register_buffer( | |
"posterior_mean_coef1", | |
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), | |
) | |
self.register_buffer( | |
"posterior_mean_coef2", | |
to_torch( | |
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) | |
), | |
) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas**2 / ( | |
2 | |
* self.posterior_variance | |
* to_torch(alphas) | |
* (1 - self.alphas_cumprod) | |
) | |
elif self.parameterization == "x0": | |
lvlb_weights = ( | |
0.5 | |
* np.sqrt(torch.Tensor(alphas_cumprod)) | |
/ (2.0 * 1 - torch.Tensor(alphas_cumprod)) | |
) | |
else: | |
raise NotImplementedError("mu not supported") | |
# TODO how to choose this term | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
mainlogger.info(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
mainlogger.info(f"{context}: Restored training weights") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
mainlogger.info("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = ( | |
self.load_state_dict(sd, strict=False) | |
if not only_model | |
else self.model.load_state_dict(sd, strict=False) | |
) | |
mainlogger.info( | |
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" | |
) | |
if len(missing) > 0: | |
mainlogger.info(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
mainlogger.info(f"Unexpected Keys: {unexpected}") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor( | |
self.log_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
* noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1.0, 1.0) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( | |
x_start=x_recon, x_t=x, t=t | |
) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance( | |
x=x, t=t, clip_denoised=clip_denoised | |
) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm( | |
reversed(range(0, self.num_timesteps)), | |
desc="Sampling t", | |
total=self.num_timesteps, | |
): | |
img = self.p_sample( | |
img, | |
torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised, | |
) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
image_size = self.image_size | |
channels = self.channels | |
return self.p_sample_loop( | |
(batch_size, channels, image_size, image_size), | |
return_intermediates=return_intermediates, | |
) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) | |
* x_start | |
* extract_into_tensor(self.scale_arr, t, x_start.shape) | |
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
* noise | |
) | |
def get_input(self, batch, k): | |
x = batch[k] | |
x = x.to(memory_format=torch.contiguous_format).float() | |
return x | |
def _get_rows_from_list(self, samples): | |
n_imgs_per_row = len(samples) | |
denoise_grid = rearrange(samples, "n b c h w -> b n c h w") | |
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.first_stage_key) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
# get diffusion row | |
diffusion_row = list() | |
x_start = x[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), "1 -> b", b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
diffusion_row.append(x_noisy) | |
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, denoise_row = self.sample( | |
batch_size=N, return_intermediates=True | |
) | |
log["samples"] = samples | |
log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__( | |
self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
cond_stage_key="caption", | |
cond_stage_trainable=False, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
uncond_prob=0.2, | |
uncond_type="empty_seq", | |
scale_factor=1.0, | |
scale_by_std=False, | |
encoder_type="2d", | |
only_model=False, | |
use_scale=False, | |
scale_a=1, | |
scale_b=0.3, | |
mid_step=400, | |
fix_scale_bug=False, | |
*args, | |
**kwargs, | |
): | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs["timesteps"] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
conditioning_key = default(conditioning_key, "crossattn") | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
# scale factor | |
self.use_scale = use_scale | |
if self.use_scale: | |
self.scale_a = scale_a | |
self.scale_b = scale_b | |
if fix_scale_bug: | |
scale_step = self.num_timesteps - mid_step | |
else: # bug | |
scale_step = self.num_timesteps | |
scale_arr1 = np.linspace(scale_a, scale_b, mid_step) | |
scale_arr2 = np.full(scale_step, scale_b) | |
scale_arr = np.concatenate((scale_arr1, scale_arr2)) | |
scale_arr_prev = np.append(scale_a, scale_arr[:-1]) | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer("scale_arr", to_torch(scale_arr)) | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer("scale_factor", torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.first_stage_config = first_stage_config | |
self.cond_stage_config = cond_stage_config | |
self.clip_denoised = False | |
self.cond_stage_forward = cond_stage_forward | |
self.encoder_type = encoder_type | |
assert encoder_type in ["2d", "3d"] | |
self.uncond_prob = uncond_prob | |
self.classifier_free_guidance = True if uncond_prob > 0 else False | |
assert uncond_type in ["zero_embed", "empty_seq"] | |
self.uncond_type = uncond_type | |
self.restarted_from_ckpt = False | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
self.restarted_from_ckpt = True | |
def make_cond_schedule( | |
self, | |
): | |
self.cond_ids = torch.full( | |
size=(self.num_timesteps,), | |
fill_value=self.num_timesteps - 1, | |
dtype=torch.long, | |
) | |
ids = torch.round( | |
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) | |
).long() | |
self.cond_ids[: self.num_timesteps_cond] = ids | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
if self.use_scale: | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) | |
* x_start | |
* extract_into_tensor(self.scale_arr, t, x_start.shape) | |
+ extract_into_tensor( | |
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
* noise | |
) | |
else: | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) | |
* x_start | |
+ extract_into_tensor( | |
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
* noise | |
) | |
def _freeze_model(self): | |
for name, para in self.model.diffusion_model.named_parameters(): | |
para.requires_grad = False | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if not self.cond_stage_trainable: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, "encode") and callable( | |
self.cond_stage_model.encode | |
): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def get_first_stage_encoding(self, encoder_posterior, noise=None): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample(noise=noise) | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError( | |
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" | |
) | |
return self.scale_factor * z | |
def encode_first_stage(self, x): | |
if self.encoder_type == "2d" and x.dim() == 5: | |
b, _, t, _, _ = x.shape | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
reshape_back = True | |
else: | |
reshape_back = False | |
encoder_posterior = self.first_stage_model.encode(x) | |
results = self.get_first_stage_encoding(encoder_posterior).detach() | |
if reshape_back: | |
results = rearrange(results, "(b t) c h w -> b c t h w", b=b, t=t) | |
return results | |
def encode_first_stage_2DAE(self, x): | |
b, _, t, _, _ = x.shape | |
results = torch.cat( | |
[ | |
self.get_first_stage_encoding(self.first_stage_model.encode(x[:, :, i])) | |
.detach() | |
.unsqueeze(2) | |
for i in range(t) | |
], | |
dim=2, | |
) | |
return results | |
def decode_core(self, z, **kwargs): | |
if self.encoder_type == "2d" and z.dim() == 5: | |
b, _, t, _, _ = z.shape | |
z = rearrange(z, "b c t h w -> (b t) c h w") | |
reshape_back = True | |
else: | |
reshape_back = False | |
z = 1.0 / self.scale_factor * z | |
results = self.first_stage_model.decode(z, **kwargs) | |
if reshape_back: | |
results = rearrange(results, "(b t) c h w -> b c t h w", b=b, t=t) | |
return results | |
def decode_first_stage(self, z, **kwargs): | |
return self.decode_core(z, **kwargs) | |
def apply_model(self, x_noisy, t, cond, **kwargs): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
pass | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
key = ( | |
"c_concat" if self.model.conditioning_key == "concat" else "c_crossattn" | |
) | |
cond = {key: cond} | |
x_recon = self.model(x_noisy, t, **cond, **kwargs) | |
if isinstance(x_recon, tuple): | |
return x_recon[0] | |
else: | |
return x_recon | |
def _get_denoise_row_from_list(self, samples, desc=""): | |
denoise_row = [] | |
for zd in tqdm(samples, desc=desc): | |
denoise_row.append(self.decode_first_stage(zd.to(self.device))) | |
n_log_timesteps = len(denoise_row) | |
denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W | |
if denoise_row.dim() == 5: | |
# img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps] | |
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w") | |
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") | |
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps) | |
elif denoise_row.dim() == 6: | |
# video, grid_size=[n_log_timesteps*bs, t] | |
video_length = denoise_row.shape[3] | |
denoise_grid = rearrange(denoise_row, "n b c t h w -> b n c t h w") | |
denoise_grid = rearrange(denoise_grid, "b n c t h w -> (b n) c t h w") | |
denoise_grid = rearrange(denoise_grid, "n c t h w -> (n t) c h w") | |
denoise_grid = make_grid(denoise_grid, nrow=video_length) | |
else: | |
raise ValueError | |
return denoise_grid | |
def decode_first_stage_2DAE(self, z, **kwargs): | |
b, _, t, _, _ = z.shape | |
z = 1.0 / self.scale_factor * z | |
results = torch.cat( | |
[ | |
self.first_stage_model.decode(z[:, :, i], **kwargs).unsqueeze(2) | |
for i in range(t) | |
], | |
dim=2, | |
) | |
return results | |
def p_mean_variance( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised: bool, | |
return_x0=False, | |
score_corrector=None, | |
corrector_kwargs=None, | |
**kwargs, | |
): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, **kwargs) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score( | |
self, model_out, x, t, c, **corrector_kwargs | |
) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1.0, 1.0) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( | |
x_start=x_recon, x_t=x, t=t | |
) | |
if return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised=False, | |
repeat_noise=False, | |
return_x0=False, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
**kwargs, | |
): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance( | |
x=x, | |
c=c, | |
t=t, | |
clip_denoised=clip_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
**kwargs, | |
) | |
if return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.0: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_x0: | |
return ( | |
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, | |
x0, | |
) | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop( | |
self, | |
cond, | |
shape, | |
return_intermediates=False, | |
x_T=None, | |
verbose=True, | |
callback=None, | |
timesteps=None, | |
mask=None, | |
x0=None, | |
img_callback=None, | |
start_T=None, | |
log_every_t=None, | |
**kwargs, | |
): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
# sample an initial noise | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = ( | |
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) | |
if verbose | |
else reversed(range(0, timesteps)) | |
) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != "hybrid" | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample( | |
img, cond, ts, clip_denoised=self.clip_denoised, **kwargs | |
) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1.0 - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
class LatentVisualDiffusion(LatentDiffusion): | |
def __init__( | |
self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.random_cond = random_cond | |
self.instantiate_img_embedder(cond_img_config, freeze=True) | |
num_tokens = 16 if finegrained else 4 | |
self.image_proj_model = self.init_projector( | |
use_finegrained=finegrained, | |
num_tokens=num_tokens, | |
input_dim=1024, | |
cross_attention_dim=1024, | |
dim=1280, | |
) | |
def instantiate_img_embedder(self, config, freeze=True): | |
embedder = instantiate_from_config(config) | |
if freeze: | |
self.embedder = embedder.eval() | |
self.embedder.train = disabled_train | |
for param in self.embedder.parameters(): | |
param.requires_grad = False | |
def init_projector( | |
self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim | |
): | |
if not use_finegrained: | |
image_proj_model = ImageProjModel( | |
clip_extra_context_tokens=num_tokens, | |
cross_attention_dim=cross_attention_dim, | |
clip_embeddings_dim=input_dim, | |
) | |
else: | |
image_proj_model = Resampler( | |
dim=input_dim, | |
depth=4, | |
dim_head=64, | |
heads=12, | |
num_queries=num_tokens, | |
embedding_dim=dim, | |
output_dim=cross_attention_dim, | |
ff_mult=4, | |
) | |
return image_proj_model | |
## Never delete this func: it is used in log_images() and inference stage | |
def get_image_embeds(self, batch_imgs): | |
## img: b c h w | |
img_token = self.embedder(batch_imgs) | |
img_emb = self.image_proj_model(img_token) | |
return img_emb | |
class DiffusionWrapper(pl.LightningModule): | |
def __init__(self, diff_model_config, conditioning_key): | |
super().__init__() | |
self.diffusion_model = instantiate_from_config(diff_model_config) | |
self.conditioning_key = conditioning_key | |
def forward( | |
self, | |
x, | |
t, | |
c_concat: list = None, | |
c_crossattn: list = None, | |
c_adm=None, | |
s=None, | |
mask=None, | |
**kwargs, | |
): | |
# temporal_context = fps is foNone | |
if self.conditioning_key is None: | |
out = self.diffusion_model(x, t) | |
elif self.conditioning_key == "concat": | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, **kwargs) | |
elif self.conditioning_key == "crossattn": | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(x, t, context=cc, **kwargs) | |
elif self.conditioning_key == "hybrid": | |
## it is just right [b,c,t,h,w]: concatenate in channel dim | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc) | |
elif self.conditioning_key == "resblockcond": | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, context=cc) | |
elif self.conditioning_key == "adm": | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, y=cc) | |
elif self.conditioning_key == "hybrid-adm": | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, y=c_adm) | |
elif self.conditioning_key == "hybrid-time": | |
assert s is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s) | |
elif self.conditioning_key == "concat-time-mask": | |
# assert s is not None | |
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape) | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask) | |
elif self.conditioning_key == "concat-adm-mask": | |
# assert s is not None | |
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask) | |
elif self.conditioning_key == "hybrid-adm-mask": | |
cc = torch.cat(c_crossattn, 1) | |
if c_concat is not None: | |
xc = torch.cat([x] + c_concat, dim=1) | |
else: | |
xc = x | |
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask) | |
elif ( | |
self.conditioning_key == "hybrid-time-adm" | |
): # adm means y, e.g., class index | |
# assert s is not None | |
assert c_adm is not None | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm) | |
else: | |
raise NotImplementedError() | |
return out | |